A micropolar-based asymptotic homogenization approach for the anal- ysis of composite materials with periodic microstructure is proposed. The macro descriptors are directly linked to both suitable perturbation functions, obtained via asymptotic homogenization scheme, and micropolar two-dimensional deformation modes. A properly conceived energy equivalence between the macroscopic point and a microscopic representative portion of the periodic composite material is intro- duced to derive the overall micropolar constitutive tensors. The resulting constitutive tensors are not affected by the choice of the periodic cell.
Micropolar Modelling of Periodic Cauchy Materials Based on Asymptotic Homogenization / De Bellis, Maria Laura; Bacigalupo, Andrea; Zavarise, Giorgio - In: Current Trends and Open Problems in Computational Mechanics[s.l] : Springer, 2022. - ISBN 978-3-030-87311-0. - pp. 93-100 [10.1007/978-3-030-87312-7_10]
Micropolar Modelling of Periodic Cauchy Materials Based on Asymptotic Homogenization
Zavarise, Giorgio
2022
Abstract
A micropolar-based asymptotic homogenization approach for the anal- ysis of composite materials with periodic microstructure is proposed. The macro descriptors are directly linked to both suitable perturbation functions, obtained via asymptotic homogenization scheme, and micropolar two-dimensional deformation modes. A properly conceived energy equivalence between the macroscopic point and a microscopic representative portion of the periodic composite material is intro- duced to derive the overall micropolar constitutive tensors. The resulting constitutive tensors are not affected by the choice of the periodic cell.File | Dimensione | Formato | |
---|---|---|---|
Contribution_DeBellis_Bacigalupo_Zavarise.pdf
Open Access dal 14/03/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
325.13 kB
Formato
Adobe PDF
|
325.13 kB | Adobe PDF | Visualizza/Apri |
9 - 2022 Book 70 Wriggers .pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
561.65 kB
Formato
Adobe PDF
|
561.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971845