The automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles to comply with the increasingly restrictive environmental regulations. One of the latest technologies, which is still developing, is based on the fabrication of the body-in-white and car parts through the stamping of aluminum tailor welded blanks. Tailor welded blanks (TWBs) are generally a combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly laser butt-welded. Even though the aluminum TWBs have the main advantage of producing lightweight parts, their use is still limited by the lower formability than their parent materials and by the fact that laser welding of aluminum sheets still remains a process easily subjected to weld defects (i.e., internal porosity) and, hence, requires strict control of process parameters. This study has investigated the effects of the main laser welding process parameters (laser power, welding speed, and focus position) on the mechanical properties and formability of aluminum TWBs made of the 6xxx series. The research results show that the welding conditions highly influence the weldability of such alloys. Heat input over 70 J/mm is responsible for excessive porosity and molten pool (and consequent root concavity), which are responsible for the lowest mechanical strength and formability of joints. Differently, low amounts of imperfections have a limited influence on the mechanical behaviors of the TWB joints. Overall, a narrow weldability window is required to ensure welded joints with proper strength and limited or no porosity.

Investigation of Strength and Formability of 6016 Aluminum Tailor Welded Blanks / Basile, Dario; Sesana, Raffaella; De Maddis, Manuela; Borella, Luca; Russo Spena, Pasquale. - In: METALS. - ISSN 2075-4701. - ELETTRONICO. - 12:10(2022), pp. 1593-1603. [10.3390/met12101593]

Investigation of Strength and Formability of 6016 Aluminum Tailor Welded Blanks

Basile, Dario;Sesana, Raffaella;De Maddis, Manuela;Russo Spena, Pasquale
2022

Abstract

The automotive industry is constantly looking for innovative techniques to produce lighter, more efficient, and less polluting vehicles to comply with the increasingly restrictive environmental regulations. One of the latest technologies, which is still developing, is based on the fabrication of the body-in-white and car parts through the stamping of aluminum tailor welded blanks. Tailor welded blanks (TWBs) are generally a combination of two/three metal sheets with different thicknesses and/or mechanical strengths, which are commonly laser butt-welded. Even though the aluminum TWBs have the main advantage of producing lightweight parts, their use is still limited by the lower formability than their parent materials and by the fact that laser welding of aluminum sheets still remains a process easily subjected to weld defects (i.e., internal porosity) and, hence, requires strict control of process parameters. This study has investigated the effects of the main laser welding process parameters (laser power, welding speed, and focus position) on the mechanical properties and formability of aluminum TWBs made of the 6xxx series. The research results show that the welding conditions highly influence the weldability of such alloys. Heat input over 70 J/mm is responsible for excessive porosity and molten pool (and consequent root concavity), which are responsible for the lowest mechanical strength and formability of joints. Differently, low amounts of imperfections have a limited influence on the mechanical behaviors of the TWB joints. Overall, a narrow weldability window is required to ensure welded joints with proper strength and limited or no porosity.
2022
File in questo prodotto:
File Dimensione Formato  
metals-12-01593-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971783