Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF−gibbsite and CNF−graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF−gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF−graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materials
Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials / Gorur, Yunus Can; Francon, Hugo S.; Sethi, Jatin; Maddalena, Lorenza; Montanari, Céline; Reid, Michael S.; Erlandsson, Johan; Carosio, Federico; Larsson, Per A.; Wågberg, Lars. - In: ACS APPLIED NANO MATERIALS. - ISSN 2574-0970. - ELETTRONICO. - 5:7(2022), pp. 9188-9200. [10.1021/acsanm.2c01530]
Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials
Maddalena, Lorenza;Carosio, Federico;
2022
Abstract
Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF−gibbsite and CNF−graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF−gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF−graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materialsFile | Dimensione | Formato | |
---|---|---|---|
acsanm.2c01530-Gorur.pdf
accesso aperto
Descrizione: articolo su rivista
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971346