This paper presents an efficient approach for subsequence search in data streams. The problem consists of identifying coherent repetitions of a given reference time-series, also in the multivariate case, within a longer data stream. The most widely adopted metric to address this problem is Dynamic Time Warping (DTW), but its computational complexity is a well-known issue. In this paper, we present an approach aimed at learning a kernel approximating DTW for efficiently analyzing streaming data collected from wearable sensors, while reducing the burden of DTW computation. Contrary to kernel, DTW allows for comparing two time-series with different length. To enable the use of kernel for comparing two time-series with different length, a feature embedding is required in order to obtain a fixed length vector representation. Each vector component is the DTW between the given time-series and a set of "basis" series, randomly chosen. The approach has been validated on two benchmark datasets and on a real-life application for supporting self-rehabilitation in elderly subjects has been addressed. A comparison with traditional DTW implementations and other state-of-the-art algorithms is provided: results show a slight decrease in accuracy, which is counterbalanced by a significant reduction in computational costs.

Efficient Kernel-Based Subsequence Search for Enabling Health Monitoring Services in IoT-Based Home Setting / Candelieri, Antonio; Fedorov, Stanislav; Messina, Enza. - In: SENSORS. - ISSN 1424-8220. - 19:23(2019), p. 5192. [10.3390/s19235192]

Efficient Kernel-Based Subsequence Search for Enabling Health Monitoring Services in IoT-Based Home Setting

Stanislav Fedorov;
2019

Abstract

This paper presents an efficient approach for subsequence search in data streams. The problem consists of identifying coherent repetitions of a given reference time-series, also in the multivariate case, within a longer data stream. The most widely adopted metric to address this problem is Dynamic Time Warping (DTW), but its computational complexity is a well-known issue. In this paper, we present an approach aimed at learning a kernel approximating DTW for efficiently analyzing streaming data collected from wearable sensors, while reducing the burden of DTW computation. Contrary to kernel, DTW allows for comparing two time-series with different length. To enable the use of kernel for comparing two time-series with different length, a feature embedding is required in order to obtain a fixed length vector representation. Each vector component is the DTW between the given time-series and a set of "basis" series, randomly chosen. The approach has been validated on two benchmark datasets and on a real-life application for supporting self-rehabilitation in elderly subjects has been addressed. A comparison with traditional DTW implementations and other state-of-the-art algorithms is provided: results show a slight decrease in accuracy, which is counterbalanced by a significant reduction in computational costs.
2019
File in questo prodotto:
File Dimensione Formato  
sensors-19-05192.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971076