Space exploration plays a crucial role in research and technological advance. Yet, weightlessness entails severe risks for human life that are investigated through both Earth-based and on-orbit experiments. To this aim, parabolic flights are used to study the short-term response of the human cardiovascular system (CVS) to micro- (~0 g) and hypergravity (up to 1.8 g). However, the short flight duration and technical difficulties associated with invasive in vivo measurements allow for the acquisition of a very limited number of hemodynamic variables. To enrich the picture, numerical tools can represent a powerful alternative. In this work, a new validated multiscale model of the CVS is proposed to inquire into global and central hemodynamic alterations – including cardiac mechano-energetic balance – triggered by parabolic flight at different postures (supine, seated and standing). Our analyses show that: (i) gravity-induced CVS changes strongly depend on posture; (ii) central aortic pressure, cardiac work and oxygen consumption indexes are significantly influenced by blood migration between central and lower body regions elicited by gravity variation; and (iii) cardiac efficiency improves during 20 s microgravity, while worsening in both hypergravity phases. Finally, (iv) the role of mildly elevated intracranial pressure (ICP) encountered in 0 g is discussed as a potential risk factor for spaceflight-induced visual impairment.
In silico study of the posture-dependent cardiovascular performance during parabolic flights / Fois, Matteo; Ridolfi, Luca; Scarsoglio, Stefania. - In: ACTA ASTRONAUTICA. - ISSN 1879-2030. - ELETTRONICO. - 200:(2022), pp. 435-447. [10.1016/j.actaastro.2022.08.018]
In silico study of the posture-dependent cardiovascular performance during parabolic flights
Fois, Matteo;Ridolfi, Luca;Scarsoglio, Stefania
2022
Abstract
Space exploration plays a crucial role in research and technological advance. Yet, weightlessness entails severe risks for human life that are investigated through both Earth-based and on-orbit experiments. To this aim, parabolic flights are used to study the short-term response of the human cardiovascular system (CVS) to micro- (~0 g) and hypergravity (up to 1.8 g). However, the short flight duration and technical difficulties associated with invasive in vivo measurements allow for the acquisition of a very limited number of hemodynamic variables. To enrich the picture, numerical tools can represent a powerful alternative. In this work, a new validated multiscale model of the CVS is proposed to inquire into global and central hemodynamic alterations – including cardiac mechano-energetic balance – triggered by parabolic flight at different postures (supine, seated and standing). Our analyses show that: (i) gravity-induced CVS changes strongly depend on posture; (ii) central aortic pressure, cardiac work and oxygen consumption indexes are significantly influenced by blood migration between central and lower body regions elicited by gravity variation; and (iii) cardiac efficiency improves during 20 s microgravity, while worsening in both hypergravity phases. Finally, (iv) the role of mildly elevated intracranial pressure (ICP) encountered in 0 g is discussed as a potential risk factor for spaceflight-induced visual impairment.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Fois et al 2022 - In silico study of the posture dependente cardiac performance during parabolic flight.pdf
										
																				
									
										
											 accesso riservato 
											Descrizione: Main article
										 
									
									
									
										
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										2.19 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											In silico_Main_Manuscript_REVISED_clean.pdf
										
																				
									
										
											 Open Access dal 28/08/2024 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										1.9 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.9 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2971073
			
		
	
	
	
			      	