Arm swinging is a typical feature of human walking: Continuous and rhythmic movement of the upper limbs is important to ensure postural stability and walking efficiency. However, several factors can interfere with arm swings, making walking more risky and unstable: These include aging, neurological diseases, hemiplegia, and other comorbidities that affect motor control and coordination. Objective assessment of arm swings during walking could play a role in preventing adverse consequences, allowing appropriate treatments and rehabilitation protocols to be activated for recovery and improvement. This paper presents a system for gait analysis based on Microsoft Azure Kinect DK sensor and its body-tracking algorithm: It allows noninvasive full-body tracking, thus enabling simultaneous analysis of different aspects of walking, including arm swing characteristics. Sixteen subjects with Parkinson’s disease and 13 healthy controls were recruited with the aim of evaluating differences in arm swing features and correlating them with traditional gait parameters. Preliminary results show significant differences between the two groups and a strong correlation between the parameters. The study thus highlights the ability of the proposed system to quantify arm swing features, thus offering a simple tool to provide a more comprehensive gait assessment.
Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson’s Disease Using the Azure Kinect Sensor / Ferraris, Claudia; Amprimo, Gianluca; Masi, Giulia; Vismara, Luca; Cremascoli, Riccardo; Sinagra, Serena; Pettiti, Giuseppe; Mauro, Alessandro; Priano, Lorenzo. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 22:16(2022), p. 6282. [10.3390/s22166282]
Evaluation of Arm Swing Features and Asymmetry during Gait in Parkinson’s Disease Using the Azure Kinect Sensor
Gianluca Amprimo;Giulia Masi;
2022
Abstract
Arm swinging is a typical feature of human walking: Continuous and rhythmic movement of the upper limbs is important to ensure postural stability and walking efficiency. However, several factors can interfere with arm swings, making walking more risky and unstable: These include aging, neurological diseases, hemiplegia, and other comorbidities that affect motor control and coordination. Objective assessment of arm swings during walking could play a role in preventing adverse consequences, allowing appropriate treatments and rehabilitation protocols to be activated for recovery and improvement. This paper presents a system for gait analysis based on Microsoft Azure Kinect DK sensor and its body-tracking algorithm: It allows noninvasive full-body tracking, thus enabling simultaneous analysis of different aspects of walking, including arm swing characteristics. Sixteen subjects with Parkinson’s disease and 13 healthy controls were recruited with the aim of evaluating differences in arm swing features and correlating them with traditional gait parameters. Preliminary results show significant differences between the two groups and a strong correlation between the parameters. The study thus highlights the ability of the proposed system to quantify arm swing features, thus offering a simple tool to provide a more comprehensive gait assessment.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											sensors-22-06282-v2.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Author’s post print versione editoriale
										 
									
									
									
										
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										2.22 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.22 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2970908
			
		
	
	
	
			      	