Implantation of three-dimensional (3D) bioactive glass-derived porous scaffolds is an effective strategy for promoting bone repair and regeneration in large osseous defect sites. The present study intends to expand the potential of a SiO2–P2O5–CaO–MgO–Na2O–CaF2 glass composition, which has already proven to be successful in regenerating bone in both animals and human patients. Specifically, this research work reports the fabrication of macroporous glass–ceramic scaffolds by the foam replica method, using the abovementioned bioactive glass powders as a parent material. The sinter-crystallization of the glass powder was investigated by hot-stage microscopy, differential thermal analysis, and X-ray diffraction. Scanning electron microscopy was used to investigate the pore–strut architecture of the resultant glass–ceramic scaffolds in which diopside, fluorapatite, and wollastonite crystallized during thermal treatment. Immersion studies in simulated body fluids revealed that the scaffolds have bioactive behavior in vitro; the mechanical properties were also potentially suitable to suggest use in load-bearing bone applications.

Foam-Replicated Diopside/Fluorapatite/Wollastonite-Based Glass–Ceramic Scaffolds / Baino, F.; Tulyaganov, D. U.; Kahharov, Z.; Rahdar, A.; Verne', E.. - In: CERAMICS. - ISSN 2571-6131. - ELETTRONICO. - 5:1(2022), pp. 120-130. [10.3390/ceramics5010011]

Foam-Replicated Diopside/Fluorapatite/Wollastonite-Based Glass–Ceramic Scaffolds

Baino F.;Verne' E.
2022

Abstract

Implantation of three-dimensional (3D) bioactive glass-derived porous scaffolds is an effective strategy for promoting bone repair and regeneration in large osseous defect sites. The present study intends to expand the potential of a SiO2–P2O5–CaO–MgO–Na2O–CaF2 glass composition, which has already proven to be successful in regenerating bone in both animals and human patients. Specifically, this research work reports the fabrication of macroporous glass–ceramic scaffolds by the foam replica method, using the abovementioned bioactive glass powders as a parent material. The sinter-crystallization of the glass powder was investigated by hot-stage microscopy, differential thermal analysis, and X-ray diffraction. Scanning electron microscopy was used to investigate the pore–strut architecture of the resultant glass–ceramic scaffolds in which diopside, fluorapatite, and wollastonite crystallized during thermal treatment. Immersion studies in simulated body fluids revealed that the scaffolds have bioactive behavior in vitro; the mechanical properties were also potentially suitable to suggest use in load-bearing bone applications.
2022
File in questo prodotto:
File Dimensione Formato  
Diopside-FAp scaffolds_Ceramics 2022.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970804