The Affordable, Robust, Compact (ARC) fusion reactor is a preconceptual design proposed by the Plasma Science and Fusion Center at the Massachusetts Institute of Technology that will be developed by Commonwealth Fusion Systems. ARC features a Li2BeF4 (FLiBe) molten salt liquid blanket that provides reactor cooling, neutron shielding, and tritium breeding. This work aims to develop a preliminary coupled computational fluid dynamics (CFD) and tritium transport model to describe FLiBe flow inside the tank and to assess ARC tritium inventory in the vacuum vessel and blanket. Both models are built by taking advantage of COMSOL® Multiphysics. FLiBe velocity and temperature fields are evaluated by the CFD models, and they are passed as input to the tritium transport model. The tritium transport model computes tritium concentration inside solid materials and FLiBe. An auxiliary FLiBe inlet has been moved from the original position in the ARC preconceptual design to improve blanket cooling and to reduce the size of flow eddies. Results show that many recirculation zones generate inside the tank for the chosen tank geometry, size, and inlet-outlet conditions. Larger FLiBe temperature and tritium concentration are found in these zones. The high FLiBe temperature in recirculation areas may not allow for effective cooling, and Inconel 718 reaches critical temperatures. The largest tritium concentration for a steady-state model with continuity of tritium partial pressure at the interfaces is found in Inconel 718 while the second-highest concentration is reached in FLiBe. The total tritium inventory in the ARC blanket with the assumed model is quantified as 3.16 g.

A preliminary CFD and Tritium transport analysis for ARC blanket / Ferrero, Gabriele; Meschini, Samuele; Testoni, Raffaella. - In: FUSION SCIENCE AND TECHNOLOGY. - ISSN 1943-7641. - ELETTRONICO. - 78:8(2022), pp. 617-630. [10.1080/15361055.2022.2096365]

A preliminary CFD and Tritium transport analysis for ARC blanket

Ferrero, Gabriele;Meschini, Samuele;Testoni, Raffaella
2022

Abstract

The Affordable, Robust, Compact (ARC) fusion reactor is a preconceptual design proposed by the Plasma Science and Fusion Center at the Massachusetts Institute of Technology that will be developed by Commonwealth Fusion Systems. ARC features a Li2BeF4 (FLiBe) molten salt liquid blanket that provides reactor cooling, neutron shielding, and tritium breeding. This work aims to develop a preliminary coupled computational fluid dynamics (CFD) and tritium transport model to describe FLiBe flow inside the tank and to assess ARC tritium inventory in the vacuum vessel and blanket. Both models are built by taking advantage of COMSOL® Multiphysics. FLiBe velocity and temperature fields are evaluated by the CFD models, and they are passed as input to the tritium transport model. The tritium transport model computes tritium concentration inside solid materials and FLiBe. An auxiliary FLiBe inlet has been moved from the original position in the ARC preconceptual design to improve blanket cooling and to reduce the size of flow eddies. Results show that many recirculation zones generate inside the tank for the chosen tank geometry, size, and inlet-outlet conditions. Larger FLiBe temperature and tritium concentration are found in these zones. The high FLiBe temperature in recirculation areas may not allow for effective cooling, and Inconel 718 reaches critical temperatures. The largest tritium concentration for a steady-state model with continuity of tritium partial pressure at the interfaces is found in Inconel 718 while the second-highest concentration is reached in FLiBe. The total tritium inventory in the ARC blanket with the assumed model is quantified as 3.16 g.
File in questo prodotto:
File Dimensione Formato  
2022_A Preliminary CFD and Tritium Transport Analysis for ARC Blanket.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 18.44 MB
Formato Adobe PDF
18.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ManuscriptFinalClean.pdf

embargo fino al 25/08/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970796