Methods for No-Reference Video Quality Assessment (NR-VQA) of consumer-produced video content are largely investigated due to the spread of databases containing videos affected by natural distortions. In this work, we design an effective and efficient method for NR-VQA. The proposed method exploits a novel sampling module capable of selecting a predetermined number of frames from the whole video sequence on which to base the quality assessment. It encodes both the quality attributes and semantic content of video frames using two lightweight Convolutional Neural Networks (CNNs). Then, it estimates the quality score of the entire video using a Support Vector Regressor (SVR). We compare the proposed method against several relevant state-of-the-art methods using four benchmark databases containing user generated videos (CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC). The results show that the proposed method at a substantially lower computational cost predicts subjective video quality in line with the state of the art methods on individual databases and generalizes better than existing methods in cross-database setup.

An Efficient Method for No-Reference Video Quality Assessment / Agarla, Mirko; Celona, Luigi; Schettini, Raimondo. - In: JOURNAL OF IMAGING. - ISSN 2313-433X. - 7:3 (55)(2021). [10.3390/jimaging7030055]

An Efficient Method for No-Reference Video Quality Assessment

Mirko Agarla;
2021

Abstract

Methods for No-Reference Video Quality Assessment (NR-VQA) of consumer-produced video content are largely investigated due to the spread of databases containing videos affected by natural distortions. In this work, we design an effective and efficient method for NR-VQA. The proposed method exploits a novel sampling module capable of selecting a predetermined number of frames from the whole video sequence on which to base the quality assessment. It encodes both the quality attributes and semantic content of video frames using two lightweight Convolutional Neural Networks (CNNs). Then, it estimates the quality score of the entire video using a Support Vector Regressor (SVR). We compare the proposed method against several relevant state-of-the-art methods using four benchmark databases containing user generated videos (CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC). The results show that the proposed method at a substantially lower computational cost predicts subjective video quality in line with the state of the art methods on individual databases and generalizes better than existing methods in cross-database setup.
File in questo prodotto:
File Dimensione Formato  
publication - jimaging-07-00055.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 22.81 MB
Formato Adobe PDF
22.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970604