The aim of this study is to advance means for microalgae dewatering with the simultaneous reuse of water as new cultivation medium, specifically through ceramic membrane filtration. Three algae, namely, Spirulina platensis, Scenedesmus obliquus, and Chlorella sorokiniana were tested by filtering suspensions with four ceramic membranes having nominal pore sizes of 0.8 μm, 0.14 μm, 300 kDa, 15 kDa. The observed flux values and organic matter removal rates were related to the membrane pore size and cake layer properties, with some differences in productivity between algae types, likely due to cell size and shape. Interestingly, similar near steady-state fluxes (70-120 L m-2h-1) were measured using membranes with nominal pore size above 15 kDa, suggesting the dominance of cake layer filtration independently of the initial flux. Virtually complete algae cells rejections and high nutrient passage (>75%) were observed in all combinations. When the permeate streams were used as media for new growth cycles of the various algae, no or little growth was observed with Spirulina p., while Chlorella s. (permeate from 300 kDa membrane) and especially Scenedesmus o. (permeate from 0.14 μm membrane) showed the fastest growth rates, almost comparable to those observed with ideal fresh media.

Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration / Ricceri, Francesco; Malaguti, Marco; Derossi, Clara; Zanetti, Mariachiara; Riggio, Vincenzo; Tiraferri, Alberto. - In: CHEMOSPHERE. - ISSN 0045-6535. - 307:(2022), p. 135724. [10.1016/j.chemosphere.2022.135724]

Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration

Ricceri, Francesco;Malaguti, Marco;Derossi, Clara;Zanetti, Mariachiara;Riggio, Vincenzo;Tiraferri, Alberto
2022

Abstract

The aim of this study is to advance means for microalgae dewatering with the simultaneous reuse of water as new cultivation medium, specifically through ceramic membrane filtration. Three algae, namely, Spirulina platensis, Scenedesmus obliquus, and Chlorella sorokiniana were tested by filtering suspensions with four ceramic membranes having nominal pore sizes of 0.8 μm, 0.14 μm, 300 kDa, 15 kDa. The observed flux values and organic matter removal rates were related to the membrane pore size and cake layer properties, with some differences in productivity between algae types, likely due to cell size and shape. Interestingly, similar near steady-state fluxes (70-120 L m-2h-1) were measured using membranes with nominal pore size above 15 kDa, suggesting the dominance of cake layer filtration independently of the initial flux. Virtually complete algae cells rejections and high nutrient passage (>75%) were observed in all combinations. When the permeate streams were used as media for new growth cycles of the various algae, no or little growth was observed with Spirulina p., while Chlorella s. (permeate from 300 kDa membrane) and especially Scenedesmus o. (permeate from 0.14 μm membrane) showed the fastest growth rates, almost comparable to those observed with ideal fresh media.
File in questo prodotto:
File Dimensione Formato  
Ricceri et al_Reuse_Manuscript_Pre-Print.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
1-s2.0-S0045653522022172-main.pdf

non disponibili

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.55 MB
Formato Adobe PDF
4.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970386