Eddy current dampers (ECD) can be used to introduce damping in rotordynamic applications. ECDs are contactless in nature and can be made to introduce negligible drag force, thus being a perfect match for passive magnetic bearings such as permanent magnet bearings and superconducting bearings. However, modeling and estimating the amount of damping introduced by an ECD is a difficult task due to complicated geometry and working conditions. The present study presents a novel method for modeling and identification of the damping characteristics of ECDs for rotordynamic applications. The proposed method employs an ana- lytical dynamic model of the ECD and curve fitting with results of electromagnetic finite ele- ment (FE) models to obtain the parameters characterizing the ECD's mechanical impedance. The damping coefficient can be obtained with great accuracy from a single FE solution in quasistatic conditions. The validity of the proposed method is limited to the case of ECDs employing an axisymmetric conductor, such as a disc or a cylinder, thus covering most cases in rotordynamic applications. Finally, the accuracy of the identification procedure is verified experimentally by comparing the model's results with experimental tests.

Modeling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications

CUI, QINGWEN;AMATI, NICOLA;TONOLI, Andrea
2016

Abstract

Eddy current dampers (ECD) can be used to introduce damping in rotordynamic applications. ECDs are contactless in nature and can be made to introduce negligible drag force, thus being a perfect match for passive magnetic bearings such as permanent magnet bearings and superconducting bearings. However, modeling and estimating the amount of damping introduced by an ECD is a difficult task due to complicated geometry and working conditions. The present study presents a novel method for modeling and identification of the damping characteristics of ECDs for rotordynamic applications. The proposed method employs an ana- lytical dynamic model of the ECD and curve fitting with results of electromagnetic finite ele- ment (FE) models to obtain the parameters characterizing the ECD's mechanical impedance. The damping coefficient can be obtained with great accuracy from a single FE solution in quasistatic conditions. The validity of the proposed method is limited to the case of ECDs employing an axisymmetric conductor, such as a disc or a cylinder, thus covering most cases in rotordynamic applications. Finally, the accuracy of the identification procedure is verified experimentally by comparing the model's results with experimental tests.
File in questo prodotto:
File Dimensione Formato  
Modeling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970331