The Ukraine war has immensely affected both food and energy systems due to the significant role of Russia in supplying natural gas and fertilizers globally and the extensive contribution of both Russia and Ukraine in exporting grains and oilseeds to the international markets. Hence, the Ukraine-Russia conflict has resulted in a shortage of crops and grains in the food market, especially in Europe, causing speculations if these resources should still be used for biofuel production (1st Generation). However, the International Energy Agency has warned that lowering biofuel mandates could result in rising petroleum demand and supply concerns. In light of these unfolding events, a systems thinking approach is required to monitor and analyze the implications of this crisis for food and biofuel markets as a whole to alleviate the concerns faced and plan sustainably. In this vein, based on the trade-offs between food system elements and the biofuel supply chain, as well as the potential effects of the war on the food and energy systems worldwide, a causal loop diagram is developed in the present work. According to the insights provided, the key to preventing food insecurity and keeping biofuel mandates on an increasing trend simultaneously amid the Ukraine war is to switch from the 1st Generation biofuels to higher generations. This transition would reduce not only the pressure on the food market to move toward zero hunger (SDG 2) but also pave the way to move towards a circular economy and clean and affordable energy (SDG 7) during the post-war era. (C) 2022 BRTeam. All rights reserved.

The imbalance of food and biofuel markets amid Ukraine-Russia crisis: A systems thinking perspective / SHAMS ESFANDABADI, Zahra; Ranjbari, Meisam; Domenico Scagnelli, Simone. - In: BIOFUEL RESEARCH JOURNAL. - ISSN 2292-8782. - ELETTRONICO. - 9:2(2022), pp. 1640-1647. [10.18331/brj2022.9.2.5]

The imbalance of food and biofuel markets amid Ukraine-Russia crisis: A systems thinking perspective

Zahra Shams Esfandabadi;
2022

Abstract

The Ukraine war has immensely affected both food and energy systems due to the significant role of Russia in supplying natural gas and fertilizers globally and the extensive contribution of both Russia and Ukraine in exporting grains and oilseeds to the international markets. Hence, the Ukraine-Russia conflict has resulted in a shortage of crops and grains in the food market, especially in Europe, causing speculations if these resources should still be used for biofuel production (1st Generation). However, the International Energy Agency has warned that lowering biofuel mandates could result in rising petroleum demand and supply concerns. In light of these unfolding events, a systems thinking approach is required to monitor and analyze the implications of this crisis for food and biofuel markets as a whole to alleviate the concerns faced and plan sustainably. In this vein, based on the trade-offs between food system elements and the biofuel supply chain, as well as the potential effects of the war on the food and energy systems worldwide, a causal loop diagram is developed in the present work. According to the insights provided, the key to preventing food insecurity and keeping biofuel mandates on an increasing trend simultaneously amid the Ukraine war is to switch from the 1st Generation biofuels to higher generations. This transition would reduce not only the pressure on the food market to move toward zero hunger (SDG 2) but also pave the way to move towards a circular economy and clean and affordable energy (SDG 7) during the post-war era. (C) 2022 BRTeam. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
BRJ_Volume 9_Issue 2_Pages 1640-1647.pdf

accesso aperto

Descrizione: Perspective
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 6.94 MB
Formato Adobe PDF
6.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2968818