A modelling framework is proposed to simulate the co-precipitation of Ni-Mn-Co hydroxide as precursor of cathode material for lithium-ion batteries. It integrates a population balance equation with computational fluid dynamics to describe the evolution of the particle size in (particularly continuous) co-precipitation processes. The population balance equation is solved by employing the quadrature method of moments. In addition, a multi-environment micromixing model is employed to consider the potential effect of molecular mixing on the fast co-precipitation reaction. The modelling framework is used to investigate the co-precipitation of Ni0.8Mn0.1Co0.1(OH)2 in a multi-inlet vortex micromixer, as a suitable candidate for the study of fast co-precipitation processes in continuous mode. Finally, the simulation results are discussed, and the role of the different phenomena involved in the formation and evolution of particles is identified by inspecting the predicted trends.

CFD-PBE modelling of continuous Ni-Mn-Co hydroxide co-precipitation for Li-ion batteries / Shiea, M.; Querio, A.; Buffo, A.; Boccardo, G.; Marchisio, D.. - In: CHEMICAL ENGINEERING RESEARCH & DESIGN. - ISSN 0263-8762. - ELETTRONICO. - 177:(2022), pp. 461-472. [10.1016/j.cherd.2021.11.008]

CFD-PBE modelling of continuous Ni-Mn-Co hydroxide co-precipitation for Li-ion batteries

Shiea M.;Querio A.;Buffo A.;Boccardo G.;Marchisio D.
2022

Abstract

A modelling framework is proposed to simulate the co-precipitation of Ni-Mn-Co hydroxide as precursor of cathode material for lithium-ion batteries. It integrates a population balance equation with computational fluid dynamics to describe the evolution of the particle size in (particularly continuous) co-precipitation processes. The population balance equation is solved by employing the quadrature method of moments. In addition, a multi-environment micromixing model is employed to consider the potential effect of molecular mixing on the fast co-precipitation reaction. The modelling framework is used to investigate the co-precipitation of Ni0.8Mn0.1Co0.1(OH)2 in a multi-inlet vortex micromixer, as a suitable candidate for the study of fast co-precipitation processes in continuous mode. Finally, the simulation results are discussed, and the role of the different phenomena involved in the formation and evolution of particles is identified by inspecting the predicted trends.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S026387622100469X-main.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2968183