Human exposure to aerosols has been associated with diseases and death, reducing the population's life expectancy up to a few years. Indoor particulate matter is predominant in determining human exposure to PM because people spend most of their time indoors. Ultrafine particles (UFP) impact the human body differently from PM2.5 or PM10 fractions. Therefore, scientists cannot apply the same approach to assess the effects of UFP and PM on human health. This work summarizes the health effects, generation, and measurement of ultrafine particles in indoor environments through a literature review. When indoor particle generation is low, particle concentration indoors depends strongly on outdoor aerosols, with an indoor-to-outdoor ratio below 1. In buildings with a high indoor particle generation, the average indoor-to-outdoor UFP concentration ratio can reach 14. Combustion, electric heating, and house cleaning are the main generators of UFP indoors. Current standards for UFP assessments do not provide a solid ground for accurate and reliable measurements. Moreover, the lowest detection limit of instruments used to measure UFP concentration can be significantly different while also showing poor repeatability even among instruments with the same manufacturer and model. Consequently, data supplied by studies on UFP health effects are insufficient and inconclusive. Using ultrafine portable monitors would allow determining properly human exposure to PM0.1, but such instruments are expensive for wide use. Since there is a good correlation between UFP and NOX data, low-cost NOX sensors are good candidates to create a dense and accurate monitoring network of UFP, including indoor environments.

Ultrafine particles: A review about their health effects, presence, generation, and measurement in indoor environments / Marval, J.; Tronville, P.. - In: BUILDING AND ENVIRONMENT. - ISSN 0360-1323. - ELETTRONICO. - 216:(2022), p. 108992. [10.1016/j.buildenv.2022.108992]

Ultrafine particles: A review about their health effects, presence, generation, and measurement in indoor environments

Tronville P.
2022

Abstract

Human exposure to aerosols has been associated with diseases and death, reducing the population's life expectancy up to a few years. Indoor particulate matter is predominant in determining human exposure to PM because people spend most of their time indoors. Ultrafine particles (UFP) impact the human body differently from PM2.5 or PM10 fractions. Therefore, scientists cannot apply the same approach to assess the effects of UFP and PM on human health. This work summarizes the health effects, generation, and measurement of ultrafine particles in indoor environments through a literature review. When indoor particle generation is low, particle concentration indoors depends strongly on outdoor aerosols, with an indoor-to-outdoor ratio below 1. In buildings with a high indoor particle generation, the average indoor-to-outdoor UFP concentration ratio can reach 14. Combustion, electric heating, and house cleaning are the main generators of UFP indoors. Current standards for UFP assessments do not provide a solid ground for accurate and reliable measurements. Moreover, the lowest detection limit of instruments used to measure UFP concentration can be significantly different while also showing poor repeatability even among instruments with the same manufacturer and model. Consequently, data supplied by studies on UFP health effects are insufficient and inconclusive. Using ultrafine portable monitors would allow determining properly human exposure to PM0.1, but such instruments are expensive for wide use. Since there is a good correlation between UFP and NOX data, low-cost NOX sensors are good candidates to create a dense and accurate monitoring network of UFP, including indoor environments.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360132322002347-main.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 924.44 kB
Formato Adobe PDF
924.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2966133