In this work we present a novel approach to model the micronization of pharmaceutical ingredients at process scales and times. 3D single-phase fluid-dynamics simulations are used to compute the gas velocity field within a spiral jet mill which are provided as input in a 1D compartmentalized model to calculate solid velocities along the radial direction. The particles size reduction is taken into account through a breakage kernel that is function of gas energy and local solid holdup. Simulation results are validated against micronization experiments for lactose and paracetamol, comparing the model predictions with D10, D50 and D90 diameters values coming from Design of Experiments isosurfaces. The developed model allows for a fair estimation of the outlet particle size distribution in a short computational time, with very good predictions especially for D90 values.

A novel uncoupled quasi-3D Euler-Euler model to study the spiral jet mill micronization of pharmaceutical substances at process scale: model development and validation / Sabia, Carmine; Casalini, Tommaso; Cornolti, Luca; Spaggiari, Marco; Frigerio, Giovanni; Martinoli, Luca; Martinoli, Alberto; Buffo, Antonio; Marchisio, Daniele L.; Barbato, Maurizio C.. - In: POWDER TECHNOLOGY. - ISSN 0032-5910. - ELETTRONICO. - 405:(2022), p. 117573. [10.1016/j.powtec.2022.117573]

A novel uncoupled quasi-3D Euler-Euler model to study the spiral jet mill micronization of pharmaceutical substances at process scale: model development and validation

Sabia, Carmine;Buffo, Antonio;Marchisio, Daniele L.;
2022

Abstract

In this work we present a novel approach to model the micronization of pharmaceutical ingredients at process scales and times. 3D single-phase fluid-dynamics simulations are used to compute the gas velocity field within a spiral jet mill which are provided as input in a 1D compartmentalized model to calculate solid velocities along the radial direction. The particles size reduction is taken into account through a breakage kernel that is function of gas energy and local solid holdup. Simulation results are validated against micronization experiments for lactose and paracetamol, comparing the model predictions with D10, D50 and D90 diameters values coming from Design of Experiments isosurfaces. The developed model allows for a fair estimation of the outlet particle size distribution in a short computational time, with very good predictions especially for D90 values.
File in questo prodotto:
File Dimensione Formato  
CS-powderTechnol-2021-manuscript.pdf

non disponibili

Descrizione: Pre-referaggio
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 860.3 kB
Formato Adobe PDF
860.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CS-powderTechnol-2021-manuscript-rev.pdf

non disponibili

Descrizione: Post-print
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 882.82 kB
Formato Adobe PDF
882.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0032591022004673-main.pdf

accesso aperto

Descrizione: Versione pubblicata
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2965986