Gas fermentation provides a promising platform to turn low-cost and readily available single-carbon waste gases into commodity chemicals, such as 2,3-butanediol. Clostridium autoethanogenum is usually used as a robust and flexible chassis for gas fermentation. Here, we leveraged constraint-based stoichiometric modeling and kinetic ensemble modeling of the C. autoethanogenum metabolic network to provide a systematic in silico analysis of metabolic engineering interventions for 2,3-butanediol overproduction and low carbon substrate loss in dissipated CO2. Our analysis allowed us to identify and to assess comparatively the expected performances for a wide range of single, double, and triple interventions. Our analysis managed to individuate bottleneck reactions in relevant metabolic pathways when suggesting intervening strategies. Besides recapitulating intuitive and/or previously attempted genetic modifications, our analysis neatly outlined that interventions-at least partially-impinging on by-products branching from acetyl coenzyme A (acetyl-CoA) and pyruvate (acetate, ethanol, amino acids) offer valuable alternatives to the interventions focusing directly on the specific branch from pyruvate to 2,3-butanediol.
Metabolic Engineering Interventions for Sustainable 2,3-Butanediol Production in Gas-Fermenting Clostridium autoethanogenum / Ghadermazi, P.; Re, A.; Ricci, L.; Chan, S. H. J.. - In: MSYSTEMS. - ISSN 2379-5077. - ELETTRONICO. - 7:2(2022), pp. 1-20. [10.1128/msystems.01111-21]
Metabolic Engineering Interventions for Sustainable 2,3-Butanediol Production in Gas-Fermenting Clostridium autoethanogenum
Re A.;Ricci L.;
2022
Abstract
Gas fermentation provides a promising platform to turn low-cost and readily available single-carbon waste gases into commodity chemicals, such as 2,3-butanediol. Clostridium autoethanogenum is usually used as a robust and flexible chassis for gas fermentation. Here, we leveraged constraint-based stoichiometric modeling and kinetic ensemble modeling of the C. autoethanogenum metabolic network to provide a systematic in silico analysis of metabolic engineering interventions for 2,3-butanediol overproduction and low carbon substrate loss in dissipated CO2. Our analysis allowed us to identify and to assess comparatively the expected performances for a wide range of single, double, and triple interventions. Our analysis managed to individuate bottleneck reactions in relevant metabolic pathways when suggesting intervening strategies. Besides recapitulating intuitive and/or previously attempted genetic modifications, our analysis neatly outlined that interventions-at least partially-impinging on by-products branching from acetyl coenzyme A (acetyl-CoA) and pyruvate (acetate, ethanol, amino acids) offer valuable alternatives to the interventions focusing directly on the specific branch from pyruvate to 2,3-butanediol.File | Dimensione | Formato | |
---|---|---|---|
BDO.pdf
accesso aperto
Descrizione: Articolo Principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.93 MB
Formato
Adobe PDF
|
4.93 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2965720