The control of the motion of magnetic domains is of crucial interest for the development of several spintronic applications, such as high-density racetrack memories and domain wall logic. In these devices, domain wall manipulation can be achieved via pulsed currents or applying external fields. However, real-world applications require accurate signal synchronization systems, keeping limited the power budget. Up to now, geometrical restrictions in the magnetic wire, known as notches, were used to confine domain walls at the expense of high resolution of the fabrication process. The solution based on the Voltage-Controlled Magnetic Anisotropy (VCMA) effect appears more promising--it is successful for controlling the skyrmion motion--avoids the need for strong depinning currents, simplifies the fabrication process, and gives more freedom in the control logic. The anisotropy variation induced by the VCMA can create barriers or wells that can be used to limit the movement of domain walls and obtain an effective synchronization. In this article, we propose a system-level evaluation of the effectiveness of the proposed VCMA synchronization method. Starting from a two-coordinates model, the motion of domain walls, the performance, and the efficiency of the approach are evaluated. We modeled the delay using SPICE. The VCMA showed clear advantages in the realization of the confinement structure at the system level with respect to the notch solution.

Simulation and Modeling of Racetrack Memories With VCMA Synchronization / Diona, Pietro; Gnoli, Luca; Riente, Fabrizio. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - STAMPA. - 69:7(2022), pp. 3675-3680. [10.1109/TED.2022.3173920]

Simulation and Modeling of Racetrack Memories With VCMA Synchronization

Gnoli, Luca;Riente, Fabrizio
2022

Abstract

The control of the motion of magnetic domains is of crucial interest for the development of several spintronic applications, such as high-density racetrack memories and domain wall logic. In these devices, domain wall manipulation can be achieved via pulsed currents or applying external fields. However, real-world applications require accurate signal synchronization systems, keeping limited the power budget. Up to now, geometrical restrictions in the magnetic wire, known as notches, were used to confine domain walls at the expense of high resolution of the fabrication process. The solution based on the Voltage-Controlled Magnetic Anisotropy (VCMA) effect appears more promising--it is successful for controlling the skyrmion motion--avoids the need for strong depinning currents, simplifies the fabrication process, and gives more freedom in the control logic. The anisotropy variation induced by the VCMA can create barriers or wells that can be used to limit the movement of domain walls and obtain an effective synchronization. In this article, we propose a system-level evaluation of the effectiveness of the proposed VCMA synchronization method. Starting from a two-coordinates model, the motion of domain walls, the performance, and the efficiency of the approach are evaluated. We modeled the delay using SPICE. The VCMA showed clear advantages in the realization of the confinement structure at the system level with respect to the notch solution.
File in questo prodotto:
File Dimensione Formato  
2022_TED___VCMA (3).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 930.27 kB
Formato Adobe PDF
930.27 kB Adobe PDF Visualizza/Apri
Riente-Simulation.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2964544