In classical epidemic models, a neglected aspect is the heterogeneity of disease transmission and progression linked to the viral load of each infected individual. Here, we investigate the interplay between the evolution of individuals’ viral load and the epidemic dynamics from a theoretical point of view. We propose a stochastic particle model describing the infection transmission and the individual physiological course of the disease. Agents have a double microscopic state: a discrete label, that denotes the epidemiological compartment to which they belong and switches in consequence of a Markovian process, and a microscopic trait, measuring their viral load, that changes in consequence of binary interactions or interactions with a background. Specifically, we consider Susceptible-Infected-Removed-like dynamics where infectious individuals may be isolated and the isolation rate may depend on the viral load-sensitivity and frequency of tests. We derive kinetic evolution equations for the distribution functions of the viral load of the individuals in each compartment, whence, via upscaling procedures, we obtain macroscopic equations for the densities and viral load momentum. We perform then a qualitative analysis of the ensuing macroscopic model. Finally, we present numerical tests in the case of both constant and viral load–dependent isolation control.

An SIR-like kinetic model tracking individuals' viral load / Della Marca, Rossella; Loy, Nadia; Tosin, Andrea. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - ELETTRONICO. - 17:3(2022), pp. 467-494. [10.3934/nhm.2022017]

An SIR-like kinetic model tracking individuals' viral load

Loy, Nadia;Tosin, Andrea
2022

Abstract

In classical epidemic models, a neglected aspect is the heterogeneity of disease transmission and progression linked to the viral load of each infected individual. Here, we investigate the interplay between the evolution of individuals’ viral load and the epidemic dynamics from a theoretical point of view. We propose a stochastic particle model describing the infection transmission and the individual physiological course of the disease. Agents have a double microscopic state: a discrete label, that denotes the epidemiological compartment to which they belong and switches in consequence of a Markovian process, and a microscopic trait, measuring their viral load, that changes in consequence of binary interactions or interactions with a background. Specifically, we consider Susceptible-Infected-Removed-like dynamics where infectious individuals may be isolated and the isolation rate may depend on the viral load-sensitivity and frequency of tests. We derive kinetic evolution equations for the distribution functions of the viral load of the individuals in each compartment, whence, via upscaling procedures, we obtain macroscopic equations for the densities and viral load momentum. We perform then a qualitative analysis of the ensuing macroscopic model. Finally, we present numerical tests in the case of both constant and viral load–dependent isolation control.
File in questo prodotto:
File Dimensione Formato  
dellamarca2022NHM.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DMrLnTa-SIR_viral_load.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2963005