In this study, modified loose nanofiltration membranes were prepared by in-situ decoration with Zeolitic Imidazolate Framework-7 (ZIF-7) on the surface of porous polyethersulfone substrates functionalized with co-deposited sulfobetaine methacrylate (SBMA) zwitterion (ZW) and polydopamine (PDA). With the aid of ZW/PDA active layer co-deposition under mild conditions, ZIF-7 metal organic framework (MOF) nanocrystals were successfully formed and anchored onto the membrane surface via both non-covalent and covalent bonds to simultaneously achieve the desired selectivity and productivity of the loose nanofiltration membranes. The characterization results confirmed the successful deposition of the ZW/PDA active layer and the consequent decoration with ZIF-7 nanocrystals. The average water contact angle decreased notably from 81.4 to 51.43 degrees upon the formation of ZIF-7. This membrane showed high rejection (~99.9%) of methyl blue and Congo red dyes and high water flux with dye solutions (around 40 L m-2h-1) at a very low applied pressure of 1.5 bar. Moreover, the filtration experiments revealed that functionalized membranes exhibited a significant reduction in fouling and biofouling propensity. Notably, the MOF-SBMA/PDA membrane displayed favorable antifouling behavior associated with a significant ability to recover flux upon simple physical cleaning. The combination of these two properties is possibly the most promising feature of the membrane proposed in this study.
Loose nanofiltration membranes functionalized with in situ-synthesized metal organic framework for water treatment / Mohammad Nejad, S.; Seyedpour, S. F.; Aghapour Aktij, S.; Dadashi Firouzjaei, M.; Elliott, M.; Tiraferri, A.; Sadrzadeh, M.; Rahimpour, A.. - In: MATERIALS TODAY CHEMISTRY. - ISSN 2468-5194. - 24:(2022), p. 100909. [10.1016/j.mtchem.2022.100909]
Loose nanofiltration membranes functionalized with in situ-synthesized metal organic framework for water treatment
Tiraferri, A.;
2022
Abstract
In this study, modified loose nanofiltration membranes were prepared by in-situ decoration with Zeolitic Imidazolate Framework-7 (ZIF-7) on the surface of porous polyethersulfone substrates functionalized with co-deposited sulfobetaine methacrylate (SBMA) zwitterion (ZW) and polydopamine (PDA). With the aid of ZW/PDA active layer co-deposition under mild conditions, ZIF-7 metal organic framework (MOF) nanocrystals were successfully formed and anchored onto the membrane surface via both non-covalent and covalent bonds to simultaneously achieve the desired selectivity and productivity of the loose nanofiltration membranes. The characterization results confirmed the successful deposition of the ZW/PDA active layer and the consequent decoration with ZIF-7 nanocrystals. The average water contact angle decreased notably from 81.4 to 51.43 degrees upon the formation of ZIF-7. This membrane showed high rejection (~99.9%) of methyl blue and Congo red dyes and high water flux with dye solutions (around 40 L m-2h-1) at a very low applied pressure of 1.5 bar. Moreover, the filtration experiments revealed that functionalized membranes exhibited a significant reduction in fouling and biofouling propensity. Notably, the MOF-SBMA/PDA membrane displayed favorable antifouling behavior associated with a significant ability to recover flux upon simple physical cleaning. The combination of these two properties is possibly the most promising feature of the membrane proposed in this study.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2468519422001380-main.pdf
accesso riservato
Descrizione: Versione editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Manuscript-Final.pdf
accesso aperto
Descrizione: Versione pre-print autore
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2961955