When studying the behavior of a field programmable gate array (FPGA) under radiation, the most commonly used methodology consists in evaluating the single-event effect (SEE) cross section of its elements individually. However, this method does not allow the estimation of the device failure rate when using a custom design. An alternative approach based on benchmark circuits is presented in this article. It allows standardized application-level testing, which makes the comparison between different FPGAs easier. Moreover, it allows the evaluation of the FPGA failure rate independent of the application that will be implemented. The employed benchmark circuit belongs to the ITC’99 benchmark suite developed at Politecnico di Torino. Using the proposed methodology, the response of four FPGAs—the NG-Medium, the ProASIC3, the SmartFusion2, and the PolarFire—was evaluated under high-energy protons. Radiation tests with thermal neutrons were also conducted on the PolarFire to assess its potential sensitivity to them. Moreover, its performances in terms of total ionizing dose (TID) effects have been evaluated by measuring the degradation of the propagation delay during irradiation

FPGA Qualification and Failure Rate Estimation Methodology for LHC Environments Using Benchmarks Test Circuits / Scialdone, A.; Ferraro, R.; Alía, R. G.; Sterpone, L.; Masi, S. Danzeca and A.. - In: IEEE TRANSACTIONS ON NUCLEAR SCIENCE. - ISSN 0018-9499. - ELETTRONICO. - 69:7(2022), pp. 1633-1641. [10.1109/TNS.2022.3162037]

FPGA Qualification and Failure Rate Estimation Methodology for LHC Environments Using Benchmarks Test Circuits

L. Sterpone;
2022

Abstract

When studying the behavior of a field programmable gate array (FPGA) under radiation, the most commonly used methodology consists in evaluating the single-event effect (SEE) cross section of its elements individually. However, this method does not allow the estimation of the device failure rate when using a custom design. An alternative approach based on benchmark circuits is presented in this article. It allows standardized application-level testing, which makes the comparison between different FPGAs easier. Moreover, it allows the evaluation of the FPGA failure rate independent of the application that will be implemented. The employed benchmark circuit belongs to the ITC’99 benchmark suite developed at Politecnico di Torino. Using the proposed methodology, the response of four FPGAs—the NG-Medium, the ProASIC3, the SmartFusion2, and the PolarFire—was evaluated under high-energy protons. Radiation tests with thermal neutrons were also conducted on the PolarFire to assess its potential sensitivity to them. Moreover, its performances in terms of total ionizing dose (TID) effects have been evaluated by measuring the degradation of the propagation delay during irradiation
File in questo prodotto:
File Dimensione Formato  
FPGA_Qualification_and_Failure_Rate_Estimation_Methodology_for_LHC_Environments_Using_Benchmarks_Test_Circuits (1).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 833.2 kB
Formato Adobe PDF
833.2 kB Adobe PDF Visualizza/Apri
FPGA_Qualification_and_Failure_Rate_Estimation_Methodology_for_LHC_Environments_Using_Benchmarks_Test_Circuits.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2961200