We consider the initial value Cauchy problem for a class of evolution equations whose Hamiltonian is the Weyl quantization of a homogeneous quadratic form with non-negative definite real part. The solution semigroup is shown to be strongly continuous on several spaces: the Shubin--Sobolev spaces, the Schwartz space, the tempered distributions, the equal index Beurling type Gelfand--Shilov spaces and their dual ultradistribution spaces.
Semigroups for quadratic evolution equations acting on Shubin-Sobolev and Gelfand-Shilov spaces / Wahlberg, Patrik. - In: ANNALES FENNICI MATHEMATICI. - ISSN 2737-0690. - 47:2(2022), pp. 821-853. [10.54330/afm.119820]
Semigroups for quadratic evolution equations acting on Shubin-Sobolev and Gelfand-Shilov spaces
Wahlberg Patrik
2022
Abstract
We consider the initial value Cauchy problem for a class of evolution equations whose Hamiltonian is the Weyl quantization of a homogeneous quadratic form with non-negative definite real part. The solution semigroup is shown to be strongly continuous on several spaces: the Shubin--Sobolev spaces, the Schwartz space, the tempered distributions, the equal index Beurling type Gelfand--Shilov spaces and their dual ultradistribution spaces.File | Dimensione | Formato | |
---|---|---|---|
119820-Article Text-238165-1-10-20220603.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
426.32 kB
Formato
Adobe PDF
|
426.32 kB | Adobe PDF | Visualizza/Apri |
wahlberg2.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
432.9 kB
Formato
Adobe PDF
|
432.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2960943