We consider the initial value Cauchy problem for a class of evolution equations whose Hamiltonian is the Weyl quantization of a homogeneous quadratic form with non-negative definite real part. The solution semigroup is shown to be strongly continuous on several spaces: the Shubin--Sobolev spaces, the Schwartz space, the tempered distributions, the equal index Beurling type Gelfand--Shilov spaces and their dual ultradistribution spaces.

Semigroups for quadratic evolution equations acting on Shubin-Sobolev and Gelfand-Shilov spaces / Wahlberg, Patrik. - In: ANNALES FENNICI MATHEMATICI. - ISSN 2737-0690. - 47:2(2022), pp. 821-853. [10.54330/afm.119820]

Semigroups for quadratic evolution equations acting on Shubin-Sobolev and Gelfand-Shilov spaces

Wahlberg Patrik
2022

Abstract

We consider the initial value Cauchy problem for a class of evolution equations whose Hamiltonian is the Weyl quantization of a homogeneous quadratic form with non-negative definite real part. The solution semigroup is shown to be strongly continuous on several spaces: the Shubin--Sobolev spaces, the Schwartz space, the tempered distributions, the equal index Beurling type Gelfand--Shilov spaces and their dual ultradistribution spaces.
File in questo prodotto:
File Dimensione Formato  
119820-Article Text-238165-1-10-20220603.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 426.32 kB
Formato Adobe PDF
426.32 kB Adobe PDF Visualizza/Apri
wahlberg2.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 432.9 kB
Formato Adobe PDF
432.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2960943