Blending green hydrogen within the gas infrastructure is seen as the first move towards Europe's climate neutrality by 2050. Especially, Europe and North African have privileged role in energy cooperation sharing a woven and complex set of natural resources, knowledge, infrastructure, clear goals towards sustainable development. Developing common projects about hydrogen can mutually help both Europe and North Africa to achieve more sustainable, reliable and modern energy systems. This paper simulates the Greenstream gas corridor (connecting Libya to Italy) under increasing hydrogen blending scenarios using a transient and multi-component fluid-dynamic model of the gas transmission system. The additional compression energy required and the compressors’ operating hours are evaluated under the hypothesis that the energy content of the transported gas is maintained. The hydrogen profiles needed to generate the blends are obtained and used to optimally size a photovoltaic-powered electrolysis system, minimizing the compressed hydrogen storage. The results indicate that the additional energy costs of transporting hydrogen blends are up to 32.5% higher than natural gas transport, while negligibly impacting the overall efficiency of energy transport. The mismatch between solar hydrogen production and pipeline receiving potential highlights a challenge to be tackled to boost intersectoral integration.

Solar hydrogen from North Africa to Europe through greenstream: A simulation-based analysis of blending scenarios and production plant sizing / Cavana, M.; Leone, P.. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - ELETTRONICO. - 46:43(2021), pp. 22618-22637. [10.1016/j.ijhydene.2021.04.065]

Solar hydrogen from North Africa to Europe through greenstream: A simulation-based analysis of blending scenarios and production plant sizing

Cavana M.;Leone P.
2021

Abstract

Blending green hydrogen within the gas infrastructure is seen as the first move towards Europe's climate neutrality by 2050. Especially, Europe and North African have privileged role in energy cooperation sharing a woven and complex set of natural resources, knowledge, infrastructure, clear goals towards sustainable development. Developing common projects about hydrogen can mutually help both Europe and North Africa to achieve more sustainable, reliable and modern energy systems. This paper simulates the Greenstream gas corridor (connecting Libya to Italy) under increasing hydrogen blending scenarios using a transient and multi-component fluid-dynamic model of the gas transmission system. The additional compression energy required and the compressors’ operating hours are evaluated under the hypothesis that the energy content of the transported gas is maintained. The hydrogen profiles needed to generate the blends are obtained and used to optimally size a photovoltaic-powered electrolysis system, minimizing the compressed hydrogen storage. The results indicate that the additional energy costs of transporting hydrogen blends are up to 32.5% higher than natural gas transport, while negligibly impacting the overall efficiency of energy transport. The mismatch between solar hydrogen production and pipeline receiving potential highlights a challenge to be tackled to boost intersectoral integration.
File in questo prodotto:
File Dimensione Formato  
Cavana Leone - H2 NorthAfrica_GreenStream_final.pdf

Open Access dal 06/05/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri
1-s2.0-S0360319921013951-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2960139