This work presents an overview of the integrated strategy developed, as part of the DEMO Key Design Integration Issue 1 (KDII1), to protect the EU-DEMO first wall (FW) from planned and unplanned plasma transients by employing discrete limiters. The present Breeding Blanket (BB) FW design, which aims at minimizing the loss of neutrons while travelling to the breeding zone, is able to withstand steady state heat fluxes up to ≈1-1.5 MW/m² [1], which is not sufficient to guarantee its integrity for most plasma-FW direct contact. This is different from ITER, which has a FW designed for peak heat loads up to 4.6 MW/m2 [2], and it does not have the DEMO BB breeding related requirement. A series of documents was compiled in the DEMO Pre-Conceptual Design Phase, in support of the KDII1. The work presented here was presented at the 2020 DEMO Gate 1 (G1) review, and collects also the comments of the panel and the relative additional studies triggered by them. The design process, presented in this paper was adopted to systematically evaluate the impact of design changes, or new physics inputs, on the FW protection strategy and integration issues. It includes compiling the list of transients, and performing the relative plasma simulations, the design of discrete limiters and the evaluation of their capability to reduce the heat flux density on the FW, and finally a preliminary analysis of the heat loads effects on the Plasma Facing Components (PFC). All these aspects, together with preliminary limiter design, where considered since the beginning, in an integrated way.
Integrated design strategy for EU-DEMO first wall protection from plasma transients / Maviglia, F.; Bachmann, C.; Federici, G.; Franke, T.; Siccinio, M.; Albanese, R.; Ambrosino, R.; Arter, W.; Bonifetto, R.; Calabro, G.; De Luca, R.; Grazia, L. E. D.; Fable, E.; Fanelli, P.; Fanni, A.; Firdaouss, M.; Gerardin, J.; Lombroni, R.; Mattei, M.; Moscheni, M.; Morris, W.; Pautasso, G.; Pestchanyi, S.; Ramogida, G.; Richiusa, M. L.; Sias, G.; Subba, F.; Villone, F.; You, J. -H.; Vizvary, Z.. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - ELETTRONICO. - 177:(2022), p. 113067. [10.1016/j.fusengdes.2022.113067]
Integrated design strategy for EU-DEMO first wall protection from plasma transients
Bonifetto R.;Moscheni M.;Subba F.;
2022
Abstract
This work presents an overview of the integrated strategy developed, as part of the DEMO Key Design Integration Issue 1 (KDII1), to protect the EU-DEMO first wall (FW) from planned and unplanned plasma transients by employing discrete limiters. The present Breeding Blanket (BB) FW design, which aims at minimizing the loss of neutrons while travelling to the breeding zone, is able to withstand steady state heat fluxes up to ≈1-1.5 MW/m² [1], which is not sufficient to guarantee its integrity for most plasma-FW direct contact. This is different from ITER, which has a FW designed for peak heat loads up to 4.6 MW/m2 [2], and it does not have the DEMO BB breeding related requirement. A series of documents was compiled in the DEMO Pre-Conceptual Design Phase, in support of the KDII1. The work presented here was presented at the 2020 DEMO Gate 1 (G1) review, and collects also the comments of the panel and the relative additional studies triggered by them. The design process, presented in this paper was adopted to systematically evaluate the impact of design changes, or new physics inputs, on the FW protection strategy and integration issues. It includes compiling the list of transients, and performing the relative plasma simulations, the design of discrete limiters and the evaluation of their capability to reduce the heat flux density on the FW, and finally a preliminary analysis of the heat loads effects on the Plasma Facing Components (PFC). All these aspects, together with preliminary limiter design, where considered since the beginning, in an integrated way.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0920379622000679-main.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
24.62 MB
Formato
Adobe PDF
|
24.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2959496