In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g-1 and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.

A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution / Elia, G. A.; Ulissi, U.; Mueller, F.; Reiter, J.; Tsiouvaras, N.; Sun, Y. -K.; Scrosati, B.; Passerini, S.; Hassoun, J.. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - 22:20(2016), pp. 6808-6814. [10.1002/chem.201505192]

A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution

Elia G. A.;
2016

Abstract

In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g-1 and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2959223