The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li–O2 batteries. The [DEME][TFSI]–LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li–O2 battery, allowing a reversible, low-polarization discharge–charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li–O2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn0.9Fe0.1O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated.

Low-Polarization Lithium–Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte / Ulissi, U.; Elia, G. A.; Jeong, S.; Mueller, F.; Reiter, J.; Tsiouvaras, N.; Sun, Y. -K.; Scrosati, B.; Passerini, S.; Hassoun, J.. - In: CHEMSUSCHEM. - ISSN 1864-5631. - 11:1(2018), pp. 229-236. [10.1002/cssc.201701696]

Low-Polarization Lithium–Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte

Elia G. A.;
2018

Abstract

The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li–O2 batteries. The [DEME][TFSI]–LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li–O2 battery, allowing a reversible, low-polarization discharge–charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li–O2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn0.9Fe0.1O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2959207