This work presents an enhanced hydrometallurgical process for recycling lithium ion batteries. First, end-of-life batteries were processed in a physical pre-treatment plant to obtain a representative electrode material. The resulting leachate was purified forth by iron-precipitation, liquid–liquid extractions, and an innovative Li–Na separation, in order to obtain valuable products. These products include high-grade graphite, cobalt oxide (Co3O4, purity 83%), cobalt oxalate (CoC2O4, purity 96%), nickel oxide (NiO, purity 89%), and lithium carbonate (Li2CO3, purity 99.8%). The recovery rate was quantitative for graphite, between 80% and 85% for cobalt depending on the nature of the recovery method, 90% for nickel, and 72% for lithium. Secondary streams were also valorized to obtain sodium sulfate (Na2SO4, purity 96%), and MnCoFe2O4 magnetic nano-sorbents according to the zero-waste concept. In order to close the loop, recycled Co3O4 and NiO were used as conversion-type anode materials for advanced lithium ion batteries showing promising performances.
Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries / Atia, T. A.; Elia, G.; Hahn, R.; Altimari, P.; Pagnanelli, F.. - In: JOURNAL OF ENERGY CHEMISTRY. - ISSN 2095-4956. - ELETTRONICO. - 35:(2019), pp. 220-227. [10.1016/j.jechem.2019.03.022]
Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries
Elia G.;
2019
Abstract
This work presents an enhanced hydrometallurgical process for recycling lithium ion batteries. First, end-of-life batteries were processed in a physical pre-treatment plant to obtain a representative electrode material. The resulting leachate was purified forth by iron-precipitation, liquid–liquid extractions, and an innovative Li–Na separation, in order to obtain valuable products. These products include high-grade graphite, cobalt oxide (Co3O4, purity 83%), cobalt oxalate (CoC2O4, purity 96%), nickel oxide (NiO, purity 89%), and lithium carbonate (Li2CO3, purity 99.8%). The recovery rate was quantitative for graphite, between 80% and 85% for cobalt depending on the nature of the recovery method, 90% for nickel, and 72% for lithium. Secondary streams were also valorized to obtain sodium sulfate (Na2SO4, purity 96%), and MnCoFe2O4 magnetic nano-sorbents according to the zero-waste concept. In order to close the loop, recycled Co3O4 and NiO were used as conversion-type anode materials for advanced lithium ion batteries showing promising performances.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2959172