Organic cations are essential components of locally concentrated ionic liquid electrolytes (LCILEs), but receive little attention. Herein, we demonstrate their significant influence on the electrochemical performance of lithium metal batteries via a comparison study of two LCILEs employing either 1‑butyl‑1-methylpyrrolidinium cation (Pyr14+) or 1-ethyl-3-methylimidazolium cation (Emim+). It is demonstrated that the structure of the organic cation in LCILEs has only a limited effect on the Li+- bis(fluorosulfonyl)imide anion (FSI−) coordination. Nonetheless, the coordination of FSI− with the organic cations is different. The less coordination of FSI− to Emim+ than to Pyr14+ results in the lower viscosity and faster Li+ transport in the Emim+-based electrolyte (EmiBE) than the Pyr14+-based electrolyte (PyrBE). Additionally, the chemical composition of the solid-electrolyte interphase (SEI) formed on lithium metal is affected by the organic cations. A more stable SEI growing in the presence of Emim+ leads to a higher lithium plating/stripping Coulombic efficiency (99.2%). As a result, Li/EmiBE/LiNi0.8Mn0.1Co0.1O2 cells exhibit a capacity of 185 mAh g−1 at 1C discharge (2 mA cm−2) and capacity retention of 96% after 200 cycles. Under the same conditions, PyrBE-based cells show only 34 mAh g−1 capacity with 39.6% retention.
Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries / Liu, X.; Mariani, A.; Zarrabeitia, M.; Di Pietro, M. E.; Dong, X.; Elia, G. A.; Mele, A.; Passerini, S.. - In: ENERGY STORAGE MATERIALS. - ISSN 2405-8297. - ELETTRONICO. - 44:(2022), pp. 370-378. [10.1016/j.ensm.2021.10.034]
Effect of organic cations in locally concentrated ionic liquid electrolytes on the electrochemical performance of lithium metal batteries
Elia G. A.;
2022
Abstract
Organic cations are essential components of locally concentrated ionic liquid electrolytes (LCILEs), but receive little attention. Herein, we demonstrate their significant influence on the electrochemical performance of lithium metal batteries via a comparison study of two LCILEs employing either 1‑butyl‑1-methylpyrrolidinium cation (Pyr14+) or 1-ethyl-3-methylimidazolium cation (Emim+). It is demonstrated that the structure of the organic cation in LCILEs has only a limited effect on the Li+- bis(fluorosulfonyl)imide anion (FSI−) coordination. Nonetheless, the coordination of FSI− with the organic cations is different. The less coordination of FSI− to Emim+ than to Pyr14+ results in the lower viscosity and faster Li+ transport in the Emim+-based electrolyte (EmiBE) than the Pyr14+-based electrolyte (PyrBE). Additionally, the chemical composition of the solid-electrolyte interphase (SEI) formed on lithium metal is affected by the organic cations. A more stable SEI growing in the presence of Emim+ leads to a higher lithium plating/stripping Coulombic efficiency (99.2%). As a result, Li/EmiBE/LiNi0.8Mn0.1Co0.1O2 cells exhibit a capacity of 185 mAh g−1 at 1C discharge (2 mA cm−2) and capacity retention of 96% after 200 cycles. Under the same conditions, PyrBE-based cells show only 34 mAh g−1 capacity with 39.6% retention.File | Dimensione | Formato | |
---|---|---|---|
Text and figure revised.pdf
Open Access dal 31/10/2023
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF | Visualizza/Apri |
2022 Effect of organic cations in locally concentrated ionic liquid electrolytes on.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2958992