This paper describes a lumped dynamic model for a high pressure PEM water electrolyzer. Since the electrolyzer under analysis is characterized by unbalanced pressure configuration with high cathodic working pressure, the model focuses on the cathode side to adequately predict the electrolyzer performance, analyzing and highlighting the importance of the cathodic activation overpotential term. The model is calibrated using experimental data from a 5.6 kW PEM water electrolyzer stack. A very good fit can be observed between the model and the experimental data, not only at different temperatures, but also at different pressures. It is found that the rise of temperature affects mainly the ohmic overpotential, while increasing the cathode pressure leads to an increment in the cathode activation overpotential that is not negligible for the electrolyzer performance. By rising the operating current, the cathode activation overpotential becomes 63% of that of the anode (at 70 bar, 1.2 A/cm2 and 50 °C).

Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side / Correa, G.; Marocco, P.; Munoz, P.; Falaguerra, T.; Ferrero, D.; Santarelli, M.. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - ELETTRONICO. - 47:7(2022), pp. 4315-4327. [10.1016/j.ijhydene.2021.11.097]

Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side

Marocco P.;Ferrero D.;Santarelli M.
2022

Abstract

This paper describes a lumped dynamic model for a high pressure PEM water electrolyzer. Since the electrolyzer under analysis is characterized by unbalanced pressure configuration with high cathodic working pressure, the model focuses on the cathode side to adequately predict the electrolyzer performance, analyzing and highlighting the importance of the cathodic activation overpotential term. The model is calibrated using experimental data from a 5.6 kW PEM water electrolyzer stack. A very good fit can be observed between the model and the experimental data, not only at different temperatures, but also at different pressures. It is found that the rise of temperature affects mainly the ohmic overpotential, while increasing the cathode pressure leads to an increment in the cathode activation overpotential that is not negligible for the electrolyzer performance. By rising the operating current, the cathode activation overpotential becomes 63% of that of the anode (at 70 bar, 1.2 A/cm2 and 50 °C).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360319921044852-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2958908