Aluminum alloys are well known light-weight alloys and very interesting materials to optimize the strength/weight ratio in order to reduce automotive vehicle weight, fuel consumption and CO2 emissions; unfortunately, they are also relatively soft and therefore cannot be used for high wear applications. The aim of this work was to develop an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) joined on to its surface. Different approaches based on brazing or shrink fitting joining technologies were used to join SiC/Al to the aluminum alloy surface. A functional graded structure was built by brazing thin layers of aluminum matrix composites reinforced with progressively higher amount of SiC particles by using a Zn–Al based alloy as joining material. Several samples were prepared by shrink fitting and brazing: 40 mm x 40 mm x 10 mm samples and a 100 mm diameter brake disc with 68% SiC particle reinforced Al matrix surface and aluminum alloy A365 body. Tribological tests demonstrated that an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) brazed on its surface is a promising technical opportunity.
SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes / Ferraris, M.; Gili, F.; Lizarralde, X.; Igartua, A.; Mendoza, G.; Blugan, G.; Gorjan, L.; Casalegno, V.. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - ELETTRONICO. - 48:8(2022), pp. 10941-10951. [10.1016/j.ceramint.2021.12.313]
SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes
Ferraris M.;Casalegno V.
2022
Abstract
Aluminum alloys are well known light-weight alloys and very interesting materials to optimize the strength/weight ratio in order to reduce automotive vehicle weight, fuel consumption and CO2 emissions; unfortunately, they are also relatively soft and therefore cannot be used for high wear applications. The aim of this work was to develop an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) joined on to its surface. Different approaches based on brazing or shrink fitting joining technologies were used to join SiC/Al to the aluminum alloy surface. A functional graded structure was built by brazing thin layers of aluminum matrix composites reinforced with progressively higher amount of SiC particles by using a Zn–Al based alloy as joining material. Several samples were prepared by shrink fitting and brazing: 40 mm x 40 mm x 10 mm samples and a 100 mm diameter brake disc with 68% SiC particle reinforced Al matrix surface and aluminum alloy A365 body. Tribological tests demonstrated that an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) brazed on its surface is a promising technical opportunity.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0272884221041080-main.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
9.61 MB
Formato
Adobe PDF
|
9.61 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Casalegno_2022-CERINT.pdf
Open Access dal 01/01/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2958695