The problem of obtaining physical parameters that cannot be directly measured from observed data arises in several scientific fields. In the classic approach, the well-known maximum likelihood estimation associated with a Gaussian distribution is employed to obtain the model parameters of a complex system. Although this approach is quite popular in statistical physics, only a handful of spurious observations (outliers) make this approach ineffective, violating the Gauss-Markov theorem. In this work, starting from the generalized logarithmic function associated to the Sharma-Taneja-Mittal (STM) information measure, we propose an outlier-resistant approach based on the generalized log-likelihood estimation. In particular, our proposal deforms the Gaussian distribution based on a two-parameter generalization of the ordinary logarithmic function. We have tested the effectiveness of our proposal considering a classic geophysical inverse problem with a very noisy data set. The results show that the task of obtaining physical parameters based on the STM measure from noisy data with several outliers outperforms the classic approach, and therefore, our proposal is a useful tool for statistical physics, information theory, and statistical inference problems.

Robust parameter estimation based on the generalized log-likelihood in the context of Sharma-Taneja-Mittal measure / Da Silva, S. L. E. F.; Kaniadakis, G.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - ELETTRONICO. - 104:2(2021), p. 024107. [10.1103/PhysRevE.104.024107]

Robust parameter estimation based on the generalized log-likelihood in the context of Sharma-Taneja-Mittal measure

Kaniadakis G.
2021

Abstract

The problem of obtaining physical parameters that cannot be directly measured from observed data arises in several scientific fields. In the classic approach, the well-known maximum likelihood estimation associated with a Gaussian distribution is employed to obtain the model parameters of a complex system. Although this approach is quite popular in statistical physics, only a handful of spurious observations (outliers) make this approach ineffective, violating the Gauss-Markov theorem. In this work, starting from the generalized logarithmic function associated to the Sharma-Taneja-Mittal (STM) information measure, we propose an outlier-resistant approach based on the generalized log-likelihood estimation. In particular, our proposal deforms the Gaussian distribution based on a two-parameter generalization of the ordinary logarithmic function. We have tested the effectiveness of our proposal considering a classic geophysical inverse problem with a very noisy data set. The results show that the task of obtaining physical parameters based on the STM measure from noisy data with several outliers outperforms the classic approach, and therefore, our proposal is a useful tool for statistical physics, information theory, and statistical inference problems.
File in questo prodotto:
File Dimensione Formato  
PRE2021.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 6.88 MB
Formato Adobe PDF
6.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2957167