The remote prognosis and diagnosis of bearings can prevent industrial system failures, but the availability of realistic experimental data, being as close as possible to those detected in industrial applications, is essential to validate the monitoring algorithms. In this paper, an innovative bearing test rig architecture is presented, based on the novel concept of “self-contained box”. The monitoring activity is applicable to a set of four middle-sized bearings simultaneously, while undergoing the independent application of radial and axial loads in order to simulate the behavior of the real industrial machinery. The impact of actions on the platform and supports is mitigated by the so-called “self-contained box” layout, leading to self-balancing of actions within the rotor system. Moreover, the high modularity of this innovative layout allows installing various sized bearings, just changing mechanical adapters. This leads to a reduction of cost as well as of system down-time required to change bearings. The test rig is equipped with suitable instrumentation to develop effective procedures and tools for in-and out-monitoring of the system. An initial characterization of the healthy system is presented.
Design of an Innovative Test Rig for Industrial Bearing Monitoring with Self-Balancing Layout / Brusa, E.; Delprete, C.; Giorio, L.; Di Maggio, L. G.; Zanella, V.. - In: MACHINES. - ISSN 2075-1702. - 10:1(2022), p. 54. [10.3390/machines10010054]
Design of an Innovative Test Rig for Industrial Bearing Monitoring with Self-Balancing Layout
Brusa E.;Delprete C.;Giorio L.;Di Maggio L. G.;
2022
Abstract
The remote prognosis and diagnosis of bearings can prevent industrial system failures, but the availability of realistic experimental data, being as close as possible to those detected in industrial applications, is essential to validate the monitoring algorithms. In this paper, an innovative bearing test rig architecture is presented, based on the novel concept of “self-contained box”. The monitoring activity is applicable to a set of four middle-sized bearings simultaneously, while undergoing the independent application of radial and axial loads in order to simulate the behavior of the real industrial machinery. The impact of actions on the platform and supports is mitigated by the so-called “self-contained box” layout, leading to self-balancing of actions within the rotor system. Moreover, the high modularity of this innovative layout allows installing various sized bearings, just changing mechanical adapters. This leads to a reduction of cost as well as of system down-time required to change bearings. The test rig is equipped with suitable instrumentation to develop effective procedures and tools for in-and out-monitoring of the system. An initial characterization of the healthy system is presented.File | Dimensione | Formato | |
---|---|---|---|
2022BrusaDesign.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
5.69 MB
Formato
Adobe PDF
|
5.69 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2954953