Nanomedicine has gained huge attention in recent years with new approaches in medical diagnosis and therapy. Particular consideration has been devoted to the nanoparticles (NPs) in theranostic field with specific interest for magnetic and gold NPs (MNPs and GNPs) due to their peculiar properties under exposition to electromagnetic fields. In this paper, we aim to develop magneto-plasmonic heterodimer by combining MNPs and GNPs through a facile and reproducible synthesis and to investigate the influence of different synthesis parameters on their response to magnetic and optical stimuli. In particular, various syntheses were performed by changing the functionalization step and using or not a reducing agent to obtain stable NP suspensions with tailored properties. The obtained heterodimers were characterized through physical, chemical, optical, and magnetic analysis, in order to evaluate their size, shape, plasmonic properties, and superparamagnetic behavior. The results revealed that the shape and dimensions of the nanocomposites can be tuned by MNPs surface functionalization, as well as by the use of a reducing agent, giving rise to nanoplatform suitable for biomedical application, exploiting the gold absorbing peak in the specific gold absorbing range of GNPs, while maintaining the superparamagnetic behavior typical of the MNPs. The obtained nanocomposites can be proposed as potential candidates for cancer theranostics.

Magneto-plasmonic heterodimers: Evaluation of different synthesis approaches / Miola, M.; Multari, C.; Debellis, D.; Laviano, F.; Gerbaldo, R.; Verne', E.. - In: JOURNAL OF THE AMERICAN CERAMIC SOCIETY. - ISSN 0002-7820. - ELETTRONICO. - 105:2(2022), pp. 1276-1285. [10.1111/jace.18190]

Magneto-plasmonic heterodimers: Evaluation of different synthesis approaches

Miola M.;Multari C.;Laviano F.;Gerbaldo R.;Verne' E.
2022

Abstract

Nanomedicine has gained huge attention in recent years with new approaches in medical diagnosis and therapy. Particular consideration has been devoted to the nanoparticles (NPs) in theranostic field with specific interest for magnetic and gold NPs (MNPs and GNPs) due to their peculiar properties under exposition to electromagnetic fields. In this paper, we aim to develop magneto-plasmonic heterodimer by combining MNPs and GNPs through a facile and reproducible synthesis and to investigate the influence of different synthesis parameters on their response to magnetic and optical stimuli. In particular, various syntheses were performed by changing the functionalization step and using or not a reducing agent to obtain stable NP suspensions with tailored properties. The obtained heterodimers were characterized through physical, chemical, optical, and magnetic analysis, in order to evaluate their size, shape, plasmonic properties, and superparamagnetic behavior. The results revealed that the shape and dimensions of the nanocomposites can be tuned by MNPs surface functionalization, as well as by the use of a reducing agent, giving rise to nanoplatform suitable for biomedical application, exploiting the gold absorbing peak in the specific gold absorbing range of GNPs, while maintaining the superparamagnetic behavior typical of the MNPs. The obtained nanocomposites can be proposed as potential candidates for cancer theranostics.
File in questo prodotto:
File Dimensione Formato  
Journal of the American Ceramic Society - 2021 - Miola - Magneto‐plasmonic heterodimers Evaluation of different synthesis.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2954747