Cement composites (CC) are among the composites most widely used in the construction industry, such as a durable waterproof and fire-resistant concrete layer, slope protection, and application in retaining wall structures. The use of 3D fabric embedded in the cement media can improve the mechanical properties of the composites. The use of calcium aluminate cement (CAC) can accelerate the production process of the CC and further contribute to improving the mechanical properties of the cement media. The purpose of this study is to promote the use of these cementitious composites by deepening the knowledge of their tensile properties and investigating the factors that may affect them. Therefore, 270 specimens (three types of stitch structure, two directions of the fabric, three water temperature values, five curing ages, with three repetitions) were made, and the tensile properties, absorbed energy, and the inversion effects were evaluated. The results showed that the curing conditions of the reinforced cementitious composite in water with temperature values of 7, 23, and 50 °C affect the tensile behavior. The tensile strength of the CCs cured in water with a temperature of 23 °C had the highest tensile strength, while 7 and 50 °C produced a lower tensile strength. The inversion effect has been observed in CC at 23 °C between 7 and 28 days, while this effect has not occurred in other curing temperature values. By examining three commercial types of stitches in fabrics and the performance of the reinforced cementitious composites in the warp direction, it was found that the structure of the “Tuck Stitch” has higher tensile strength and absorbed energy compared to “Knit stitch” and “Miss Stitch”. The tensile strength and fracture energy of the CC reinforced with “Tuck Stitch” fabric in the warp direction, by curing in 23 °C water for 7 days, were found to be 2.81 MPa and 1.65 × 103 KJ/m3, respectively. These results may be helpful in selecting the design and curing parameters for the purposes of maximizing the tensile properties of textile CAC composites.

Experimental evaluation of tensile performance of aluminate cement composite reinforced with weft knitted fabrics as a function of curing temperature / Adosi, B.; Mirjalili, S. A.; Adresi, M.; Tulliani, J. M.; Antonaci, P.. - In: POLYMERS. - ISSN 2073-4360. - ELETTRONICO. - 13:24(2021), p. 4385. [10.3390/polym13244385]

Experimental evaluation of tensile performance of aluminate cement composite reinforced with weft knitted fabrics as a function of curing temperature

Tulliani J. M.;Antonaci P.
2021

Abstract

Cement composites (CC) are among the composites most widely used in the construction industry, such as a durable waterproof and fire-resistant concrete layer, slope protection, and application in retaining wall structures. The use of 3D fabric embedded in the cement media can improve the mechanical properties of the composites. The use of calcium aluminate cement (CAC) can accelerate the production process of the CC and further contribute to improving the mechanical properties of the cement media. The purpose of this study is to promote the use of these cementitious composites by deepening the knowledge of their tensile properties and investigating the factors that may affect them. Therefore, 270 specimens (three types of stitch structure, two directions of the fabric, three water temperature values, five curing ages, with three repetitions) were made, and the tensile properties, absorbed energy, and the inversion effects were evaluated. The results showed that the curing conditions of the reinforced cementitious composite in water with temperature values of 7, 23, and 50 °C affect the tensile behavior. The tensile strength of the CCs cured in water with a temperature of 23 °C had the highest tensile strength, while 7 and 50 °C produced a lower tensile strength. The inversion effect has been observed in CC at 23 °C between 7 and 28 days, while this effect has not occurred in other curing temperature values. By examining three commercial types of stitches in fabrics and the performance of the reinforced cementitious composites in the warp direction, it was found that the structure of the “Tuck Stitch” has higher tensile strength and absorbed energy compared to “Knit stitch” and “Miss Stitch”. The tensile strength and fracture energy of the CC reinforced with “Tuck Stitch” fabric in the warp direction, by curing in 23 °C water for 7 days, were found to be 2.81 MPa and 1.65 × 103 KJ/m3, respectively. These results may be helpful in selecting the design and curing parameters for the purposes of maximizing the tensile properties of textile CAC composites.
2021
File in questo prodotto:
File Dimensione Formato  
polymers-13-04385-v2.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 25.23 MB
Formato Adobe PDF
25.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
pdfresizer.com-pdf-resize.pdf

accesso aperto

Descrizione: Versione ridimensionata
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2954414