In this paper we present new quadratures based on both quasi-interpolation and multilevel methods by using bivariate quadratic B-spline functions, defined on simple and multiple knot type-2 triangulations, improving classical quadratures, based on quasi-interpolating splines. We also prove some symmetry properties that simplify their expression, study their approximation performances, propose some numerical results and a comparison with other known multilevel spline quadratures.
Multilevel quadratic spline integration / CONCHIN GUBERNATI, Alice; Lamberti, Paola. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - ELETTRONICO. - 407:(2022), p. 114057. [10.1016/j.cam.2021.114057]
Multilevel quadratic spline integration
Alice, Conchin Gubernati;
2022
Abstract
In this paper we present new quadratures based on both quasi-interpolation and multilevel methods by using bivariate quadratic B-spline functions, defined on simple and multiple knot type-2 triangulations, improving classical quadratures, based on quasi-interpolating splines. We also prove some symmetry properties that simplify their expression, study their approximation performances, propose some numerical results and a comparison with other known multilevel spline quadratures.File | Dimensione | Formato | |
---|---|---|---|
MultilevelQuadraticSpline.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
651.1 kB
Formato
Adobe PDF
|
651.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Multilevel_revised.pdf
Open Access dal 16/01/2024
Descrizione: Post-print
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
498.87 kB
Formato
Adobe PDF
|
498.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2954269