We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.
Sub-Finsler geometry and finite propagation speed / Cowling, M. G.; Martini, A. (SPRINGER INDAM SERIES). - In: Trends in Harmonic AnalysisSTAMPA. - [s.l] : Springer International Publishing, 2013. - ISBN 978-88-470-2852-4. - pp. 147-205 [10.1007/978-88-470-2853-1_8]
Sub-Finsler geometry and finite propagation speed
Martini A.
2013
Abstract
We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cowling-Martini2013_Chapter_Sub-FinslerGeometryAndFinitePr.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
886.43 kB
Formato
Adobe PDF
|
886.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2949531