We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.

Sub-Finsler geometry and finite propagation speed / Cowling, M. G.; Martini, A. (SPRINGER INDAM SERIES). - In: Trends in Harmonic AnalysisSTAMPA. - [s.l] : Springer International Publishing, 2013. - ISBN 978-88-470-2852-4. - pp. 147-205 [10.1007/978-88-470-2853-1_8]

Sub-Finsler geometry and finite propagation speed

Martini A.
2013

Abstract

We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.
2013
978-88-470-2852-4
978-88-470-2853-1
Trends in Harmonic Analysis
File in questo prodotto:
File Dimensione Formato  
Cowling-Martini2013_Chapter_Sub-FinslerGeometryAndFinitePr.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 886.43 kB
Formato Adobe PDF
886.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949531