We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.
Sub-Finsler geometry and finite propagation speed / Cowling, M. G.; Martini, A.. - STAMPA. - (2013), pp. 147-205. [10.1007/978-88-470-2853-1_8]
Titolo: | Sub-Finsler geometry and finite propagation speed | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Titolo del libro: | Trends in Harmonic Analysis | |
Serie: | ||
Abstract: | We prove a number of results on the geometry associated to the solutions of first-order different...ial operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry. | |
ISBN: | 978-88-470-2852-4 978-88-470-2853-1 | |
Appare nelle tipologie: | 2.1 Contributo in volume (Capitolo o Saggio) |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Cowling-Martini2013_Chapter_Sub-FinslerGeometryAndFinitePr.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11583/2949531
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.