From a theorem of Christ and Mauceri and Meda, it follows that, for a homogeneous sublaplacian L on a two-step stratified group G with Lie algebra g, an operator of the form F(L) is of weak type (1, 1) and bounded on Lp(G) for 1 < p < ∞ if the spectral multiplier F satisfies a scale-invariant smoothness condition of order s > Q/2, where Q = dim g + dim[g, g] is the homogeneous dimension of G. Here we show that the condition can be pushed down to s > d/2, where d = dim g is the topological dimension of G, provided that d ≤ 7 or dim[g, g] ≤ 2.
Spectral multiplier theorems of Euclidean type on new classes of two-step stratified groups / Martini, A.; Muller, D.. - In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6115. - STAMPA. - 109:5(2014), pp. 1229-1263. [10.1112/plms/pdu033]
Titolo: | Spectral multiplier theorems of Euclidean type on new classes of two-step stratified groups | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1112/plms/pdu033 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Proceedings of London Math Soc - 2014 - Martini - Spectral multiplier theorems of Euclidean type on new classes of two%u2010step.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
lowdimensional.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2949510