From a theorem of Christ and Mauceri and Meda, it follows that, for a homogeneous sublaplacian L on a two-step stratified group G with Lie algebra g, an operator of the form F(L) is of weak type (1, 1) and bounded on Lp(G) for 1 < p < ∞ if the spectral multiplier F satisfies a scale-invariant smoothness condition of order s > Q/2, where Q = dim g + dim[g, g] is the homogeneous dimension of G. Here we show that the condition can be pushed down to s > d/2, where d = dim g is the topological dimension of G, provided that d ≤ 7 or dim[g, g] ≤ 2.

Spectral multiplier theorems of Euclidean type on new classes of two-step stratified groups / Martini, A.; Muller, D.. - In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6115. - STAMPA. - 109:5(2014), pp. 1229-1263. [10.1112/plms/pdu033]

Spectral multiplier theorems of Euclidean type on new classes of two-step stratified groups

Martini A.;
2014

Abstract

From a theorem of Christ and Mauceri and Meda, it follows that, for a homogeneous sublaplacian L on a two-step stratified group G with Lie algebra g, an operator of the form F(L) is of weak type (1, 1) and bounded on Lp(G) for 1 < p < ∞ if the spectral multiplier F satisfies a scale-invariant smoothness condition of order s > Q/2, where Q = dim g + dim[g, g] is the homogeneous dimension of G. Here we show that the condition can be pushed down to s > d/2, where d = dim g is the topological dimension of G, provided that d ≤ 7 or dim[g, g] ≤ 2.
File in questo prodotto:
File Dimensione Formato  
Proceedings of London Math Soc - 2014 - Martini - Spectral multiplier theorems of Euclidean type on new classes of two%u2010step.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 367.6 kB
Formato Adobe PDF
367.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
lowdimensional.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 561.95 kB
Formato Adobe PDF
561.95 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949510