The joint spectral theory of a system of pairwise commuting self-adjoint left-invariant differential operators L1,...,Ln on a connected Lie group G is studied, under the hypothesis that the algebra generated by them contains a "weighted subcoercive operator" of ter Elst and Robinson (1998) [52]. The joint spectrum of L1,...,Ln in every unitary representation of G is characterized as the set of the eigenvalues corresponding to a particular class of (generalized) joint eigenfunctions of positive type of L1,...,Ln. Connections with the theory of Gelfand pairs are established in the case L1,...,Ln generate the algebra of K-invariant left-invariant differential operators on G for some compact subgroup K of Aut(G). © 2011 Elsevier Inc.
Spectral theory for commutative algebras of differential operators on Lie groups / Martini, A.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 260:9(2011), pp. 2767-2814. [10.1016/j.jfa.2011.01.008]
Titolo: | Spectral theory for commutative algebras of differential operators on Lie groups | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jfa.2011.01.008 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1-s2.0-S0022123611000243-main.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
opalg.pdf | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2949506