A sharp Lp spectral multiplier theorem of Mihlin–Hörmander type is proved for a distinguished sub-Laplacian on quaternionic spheres. This is the first such result on compact sub-Riemannian manifolds where the horizontal space has corank greater than one. The proof hinges on the analysis of the quaternionic spherical harmonic decomposition, of which we present an elementary derivation.

Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres / Ahrens, J.; Cowling, M. G.; Martini, A.; Muller, D.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 294:3-4(2020), pp. 1659-1686. [10.1007/s00209-019-02313-w]

Quaternionic spherical harmonics and a sharp multiplier theorem on quaternionic spheres

Martini A.;
2020

Abstract

A sharp Lp spectral multiplier theorem of Mihlin–Hörmander type is proved for a distinguished sub-Laplacian on quaternionic spheres. This is the first such result on compact sub-Riemannian manifolds where the horizontal space has corank greater than one. The proof hinges on the analysis of the quaternionic spherical harmonic decomposition, of which we present an elementary derivation.
File in questo prodotto:
File Dimensione Formato  
Ahrens2020_Article_QuaternionicSphericalHarmonics.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 453.21 kB
Formato Adobe PDF
453.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
quaternionic.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 472.49 kB
Formato Adobe PDF
472.49 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949504