We study the Grushin operators acting on ℝd1x' × ℝd2x″ and defined by the formula L = -Σd1j=1∂2x'j- (Σd1j=1 |x'j|2) Σd2k=1 ∂2x″k. We obtain weighted Plancherel estimates for the considered operators. As a consequence we prove Lp spectral multiplier results and Bochner-Riesz summability for the Grushin operators. These results are sharp if d1 ≥ d2. We discuss also an interesting phenomenon for weighted Plancherel estimates for d1 < d2. The described spectral multiplier theorem is the analogue of the result for the sublaplacian on the Heisenberg group obtained by Müller and Stein and by Hebisch. © International Press 2012.
Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators / Martini, A.; Sikora, A.. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - STAMPA. - 19:5(2012), pp. 1075-1088. [10.4310/MRL.2012.v19.n5.a9]
Titolo: | Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.4310/MRL.2012.v19.n5.a9 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
MRL-2012-0019-0005-a009.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
grushin.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2949500