We study the Grushin operators acting on ℝd1x' × ℝd2x″ and defined by the formula L = -Σd1j=1∂2x'j- (Σd1j=1 |x'j|2) Σd2k=1 ∂2x″k. We obtain weighted Plancherel estimates for the considered operators. As a consequence we prove Lp spectral multiplier results and Bochner-Riesz summability for the Grushin operators. These results are sharp if d1 ≥ d2. We discuss also an interesting phenomenon for weighted Plancherel estimates for d1 < d2. The described spectral multiplier theorem is the analogue of the result for the sublaplacian on the Heisenberg group obtained by Müller and Stein and by Hebisch. © International Press 2012.
Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators / Martini, A.; Sikora, A.. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - STAMPA. - 19:5(2012), pp. 1075-1088. [10.4310/MRL.2012.v19.n5.a9]
Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators
Martini A.;
2012
Abstract
We study the Grushin operators acting on ℝd1x' × ℝd2x″ and defined by the formula L = -Σd1j=1∂2x'j- (Σd1j=1 |x'j|2) Σd2k=1 ∂2x″k. We obtain weighted Plancherel estimates for the considered operators. As a consequence we prove Lp spectral multiplier results and Bochner-Riesz summability for the Grushin operators. These results are sharp if d1 ≥ d2. We discuss also an interesting phenomenon for weighted Plancherel estimates for d1 < d2. The described spectral multiplier theorem is the analogue of the result for the sublaplacian on the Heisenberg group obtained by Müller and Stein and by Hebisch. © International Press 2012.File | Dimensione | Formato | |
---|---|---|---|
MRL-2012-0019-0005-a009.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
276.67 kB
Formato
Adobe PDF
|
276.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
grushin.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
373.1 kB
Formato
Adobe PDF
|
373.1 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949500