We prove several results about the best constants in the Hausdorff–Young inequality for noncommutative groups. In particular, we establish a sharp local central version for compact Lie groups, and extend known results for the Heisenberg group. In addition, we prove a universal lower bound to the best constant for general Lie groups.

The Hausdorff–Young inequality on Lie groups / Cowling, M. G.; Martini, A.; Muller, D.; Parcet, J.. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 375:1-2(2019), pp. 93-131. [10.1007/s00208-018-01799-9]

The Hausdorff–Young inequality on Lie groups

Martini A.;
2019

Abstract

We prove several results about the best constants in the Hausdorff–Young inequality for noncommutative groups. In particular, we establish a sharp local central version for compact Lie groups, and extend known results for the Heisenberg group. In addition, we prove a universal lower bound to the best constant for general Lie groups.
File in questo prodotto:
File Dimensione Formato  
Cowling2019_Article_TheHausdorffYoungInequalityOnL.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 680.89 kB
Formato Adobe PDF
680.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949498