Let L be a sub-Laplacian on a connected Lie group G of polynomial growth. It is well known that, if F:R→C is in the Schwartz class S(R), then the convolution kernel KF(L) of the operator F(L) is in the Schwartz class S(G). Here we prove a sort of converse implication for a class of groups G including all solvable noncompact groups of polynomial growth. We also discuss the problem whether integrability of KF(L) implies continuity of F.
Convolution kernels versus spectral multipliers for sub-Laplacians on groups of polynomial growth / Martini, A.; Ricci, F.; Tolomeo, L.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 277:6(2019), pp. 1603-1638. [10.1016/j.jfa.2019.05.024]
Titolo: | Convolution kernels versus spectral multipliers for sub-Laplacians on groups of polynomial growth | |
Autori: | ||
Data di pubblicazione: | 2019 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jfa.2019.05.024 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
1-s2.0-S0022123619301880-main.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
ris_schwartz.pdf | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2949494