Let L be a sub-Laplacian on a connected Lie group G of polynomial growth. It is well known that, if F:R→C is in the Schwartz class S(R), then the convolution kernel KF(L) of the operator F(L) is in the Schwartz class S(G). Here we prove a sort of converse implication for a class of groups G including all solvable noncompact groups of polynomial growth. We also discuss the problem whether integrability of KF(L) implies continuity of F.

Convolution kernels versus spectral multipliers for sub-Laplacians on groups of polynomial growth / Martini, A.; Ricci, F.; Tolomeo, L.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - STAMPA. - 277:6(2019), pp. 1603-1638. [10.1016/j.jfa.2019.05.024]

Convolution kernels versus spectral multipliers for sub-Laplacians on groups of polynomial growth

Martini A.;Ricci F.;
2019

Abstract

Let L be a sub-Laplacian on a connected Lie group G of polynomial growth. It is well known that, if F:R→C is in the Schwartz class S(R), then the convolution kernel KF(L) of the operator F(L) is in the Schwartz class S(G). Here we prove a sort of converse implication for a class of groups G including all solvable noncompact groups of polynomial growth. We also discuss the problem whether integrability of KF(L) implies continuity of F.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123619301880-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 642.91 kB
Formato Adobe PDF
642.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ris_schwartz.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 536.76 kB
Formato Adobe PDF
536.76 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949494