We study the problem of L p-boundedness (1 < p < ∞) of operators of the form m(L 1,·,L n) for a commuting system of self-adjoint left-invariant differential operators L 1,·, L n on a Lie group G of polynomial growth, which generate an algebra containing a weighted subcoercive operator. In particular, when G is a homogeneous group and L 1,·,L n are homogeneous, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz multiplier theorems.
Analysis of joint spectral multipliers on Lie groups of polynomial growth / Martini, A.. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 0373-0956. - STAMPA. - 62:4(2012), pp. 1215-1263. [10.5802/aif.2721]
Titolo: | Analysis of joint spectral multipliers on Lie groups of polynomial growth | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.5802/aif.2721 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
AIF_2012__62_4_1215_0.pdf | 2a Post-print versione editoriale / Version of Record | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2949478