We prove a multiplier theorem of Mihlin-Hörmander-type for operators of the form -Δx-V (x) Δy on Rd1 x ×Rd2 y , where V (x) = Σd1 j=1 Vj (xj ), the Vj are perturbations of the power law t → |t|2σ, and σ ∈ (1/2,∞). The result is sharp whenever d1 ≥ σd2. The main novelty of the result resides in its robustness: This appears to be the first sharp multiplier theorem for nonelliptic subelliptic operators allowing for step higher than two and perturbation of the coefficients. The proof hinges on precise estimates for eigenvalues and eigenfunctions of one-dimensional Schrödinger operators, which are stable under perturbations of the potential.

A robust approach to sharp multiplier theorems for Grushin operators / Dall'Ara, G. M.; Martini, A.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 373:11(2020), pp. 7533-7574. [10.1090/TRAN/7844]

A robust approach to sharp multiplier theorems for Grushin operators

MARTINI A.
2020

Abstract

We prove a multiplier theorem of Mihlin-Hörmander-type for operators of the form -Δx-V (x) Δy on Rd1 x ×Rd2 y , where V (x) = Σd1 j=1 Vj (xj ), the Vj are perturbations of the power law t → |t|2σ, and σ ∈ (1/2,∞). The result is sharp whenever d1 ≥ σd2. The main novelty of the result resides in its robustness: This appears to be the first sharp multiplier theorem for nonelliptic subelliptic operators allowing for step higher than two and perturbation of the coefficients. The proof hinges on precise estimates for eigenvalues and eigenfunctions of one-dimensional Schrödinger operators, which are stable under perturbations of the potential.
File in questo prodotto:
File Dimensione Formato  
S0002-9947-2020-07844-1.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 518.3 kB
Formato Adobe PDF
518.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 620.04 kB
Formato Adobe PDF
620.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2949476