We prove a multiplier theorem of Mihlin-Hörmander-type for operators of the form -Δx-V (x) Δy on Rd1 x ×Rd2 y , where V (x) = Σd1 j=1 Vj (xj ), the Vj are perturbations of the power law t → |t|2σ, and σ ∈ (1/2,∞). The result is sharp whenever d1 ≥ σd2. The main novelty of the result resides in its robustness: This appears to be the first sharp multiplier theorem for nonelliptic subelliptic operators allowing for step higher than two and perturbation of the coefficients. The proof hinges on precise estimates for eigenvalues and eigenfunctions of one-dimensional Schrödinger operators, which are stable under perturbations of the potential.
A robust approach to sharp multiplier theorems for Grushin operators / Dall'Ara, G. M.; Martini, A.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 373:11(2020), pp. 7533-7574. [10.1090/TRAN/7844]
A robust approach to sharp multiplier theorems for Grushin operators
MARTINI A.
2020
Abstract
We prove a multiplier theorem of Mihlin-Hörmander-type for operators of the form -Δx-V (x) Δy on Rd1 x ×Rd2 y , where V (x) = Σd1 j=1 Vj (xj ), the Vj are perturbations of the power law t → |t|2σ, and σ ∈ (1/2,∞). The result is sharp whenever d1 ≥ σd2. The main novelty of the result resides in its robustness: This appears to be the first sharp multiplier theorem for nonelliptic subelliptic operators allowing for step higher than two and perturbation of the coefficients. The proof hinges on precise estimates for eigenvalues and eigenfunctions of one-dimensional Schrödinger operators, which are stable under perturbations of the potential.File | Dimensione | Formato | |
---|---|---|---|
S0002-9947-2020-07844-1.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
518.3 kB
Formato
Adobe PDF
|
518.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
paper.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
620.04 kB
Formato
Adobe PDF
|
620.04 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949476