In this paper, we contribute to the construction of families of arithmetically Cohen-Macaulay (aCM) indecomposable vector bundles on a wide range of polarized surfaces (X,OX(1)) for OX(1) an ample line bundle. In many cases, we show that for every positive integer r there exists a family of indecomposable aCM vector bundles of rank r, depending roughly on r parameters, and in particular they are of wild representation type. We also introduce a general setting to study the complexity of a polarized variety (X,OX(1)) with respect to its category of aCM vector bundles. In many cases we construct indecomposable vector bundles on X which are aCM for all ample line bundles on X.
ACM vector bundles on projective surfaces of nonnegative Kodaira dimension / Ballico, E.; Huh, S.; Pons Llopis, Juan Francisco. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - STAMPA. - (2021). [10.1142/S0129167X21501093]
Titolo: | ACM vector bundles on projective surfaces of nonnegative Kodaira dimension | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S0129167X21501093 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2nd Proof corrections_done_2150109.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
Kod0_210527_v4.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Embargo: 30/10/2022 Richiedi una copia |
http://hdl.handle.net/11583/2949409