Chromatography is a widely used separation process for purification of biopharmaceuticals that is able to obtain high purities and concentrations. The phenomena that occur during separation, mass transfer and adsorption are quite complex. To better understand these phenomena and their mechanisms, multi-component adsorption isotherms must be investigated. High-throughput methodologies are a very powerful tool to determine adsorption isotherms and they waste very small amounts of sample and chemicals, but the quantification of component concentrations is a real bottleneck in multi-component isotherm determination. The behavior of bovine serum albumin, Corynebacterium diphtheriae CRM197 protein and lysozyme, selected as model proteins in binary mixtures with hydrophobic resin, is investigated here. In this work we propose a new method for determining multi-component adsorption isotherms using high-throughput experiments with filter plates, by exploiting microfluidic capillary electrophoresis. The precision and accuracy of the microfluidic capillary electrophoresis platform were evaluated in order to assess the procedure; they were both found to be high and the procedure is thus reliable in determining adsorption isotherms for binary mixtures. Multi-component adsorption isotherms were determined with a totally high-throughput procedure that turned out to be a very fast and powerful tool. The same procedure can be applied to every kind of high-throughput screening.

Use of microfluidic capillary electrophoresis for the determination of multi-component protein adsorption isotherms: Application to high-throughput analysis for hydrophobic interaction chromatography / Lietta, E.; Pieri, Alessandro; Innocenti, Elisa; Pisano, R.; Vanni, M.; Barresi, A. A.. - In: PHARMACEUTICS. - ISSN 1999-4923. - ELETTRONICO. - 13:12(2021), p. 2135. [10.3390/pharmaceutics13122135]

Use of microfluidic capillary electrophoresis for the determination of multi-component protein adsorption isotherms: Application to high-throughput analysis for hydrophobic interaction chromatography

Lietta E.;Pisano R.;Vanni M.;Barresi A. A.
2021

Abstract

Chromatography is a widely used separation process for purification of biopharmaceuticals that is able to obtain high purities and concentrations. The phenomena that occur during separation, mass transfer and adsorption are quite complex. To better understand these phenomena and their mechanisms, multi-component adsorption isotherms must be investigated. High-throughput methodologies are a very powerful tool to determine adsorption isotherms and they waste very small amounts of sample and chemicals, but the quantification of component concentrations is a real bottleneck in multi-component isotherm determination. The behavior of bovine serum albumin, Corynebacterium diphtheriae CRM197 protein and lysozyme, selected as model proteins in binary mixtures with hydrophobic resin, is investigated here. In this work we propose a new method for determining multi-component adsorption isotherms using high-throughput experiments with filter plates, by exploiting microfluidic capillary electrophoresis. The precision and accuracy of the microfluidic capillary electrophoresis platform were evaluated in order to assess the procedure; they were both found to be high and the procedure is thus reliable in determining adsorption isotherms for binary mixtures. Multi-component adsorption isotherms were determined with a totally high-throughput procedure that turned out to be a very fast and powerful tool. The same procedure can be applied to every kind of high-throughput screening.
File in questo prodotto:
File Dimensione Formato  
pharmaceutics-13-02135-v2.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2948752