We study the role of the dipolar-induced resonance (DIR) in a quasi-one-dimensional system of ultracold bosons. We first describe the effect of the DIR on two particles in a harmonic trap. Then, we consider a deep optical lattice loaded with ultracold dipolar bosons. In order to describe this system, we introduce a novel atom-dimer extended Bose-Hubbard model, which is the minimal model correctly accounting for the DIR. We analyze the impact of the DIR on the phase diagram at T=0 by exact diagonalization of a small-sized system. We show that the DIR strongly affects this phase diagram. In particular, we predict the mass density wave to occur in a narrow domain corresponding to weak nearest-neighbor interactions, and we predict the occurrence of a collapse phase for stronger dipolar interactions. © 2013 American Physical Society.
Dipolar-induced resonance for ultracold bosons in a quasi-one-dimensional optical lattice / Bartolo, N.; Papoular, D. J.; Barbiero, L.; Menotti, C.; Recati, A.. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - ELETTRONICO. - 88:2(2013). [10.1103/PhysRevA.88.023603]
Dipolar-induced resonance for ultracold bosons in a quasi-one-dimensional optical lattice
Barbiero L.;
2013
Abstract
We study the role of the dipolar-induced resonance (DIR) in a quasi-one-dimensional system of ultracold bosons. We first describe the effect of the DIR on two particles in a harmonic trap. Then, we consider a deep optical lattice loaded with ultracold dipolar bosons. In order to describe this system, we introduce a novel atom-dimer extended Bose-Hubbard model, which is the minimal model correctly accounting for the DIR. We analyze the impact of the DIR on the phase diagram at T=0 by exact diagonalization of a small-sized system. We show that the DIR strongly affects this phase diagram. In particular, we predict the mass density wave to occur in a narrow domain corresponding to weak nearest-neighbor interactions, and we predict the occurrence of a collapse phase for stronger dipolar interactions. © 2013 American Physical Society.File | Dimensione | Formato | |
---|---|---|---|
PhysRevA.88.023603.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2948166