The recent growth of Artificial Neural Networks fueled the design of numerous Artificial Intelligence (AI) dedicated hardware implementations. High power dissipation, computational complexity, and large area footprints currently limit CMOS based real-time embedded AI applications. In this work, we design and simulate through SPICE, for the first time, an artificial analog neuron based on the molecular Field-Effect Transistor (molFET) technology. MolFETs are described by a circuital model whose physical characteristics are extracted from atomistic simulations. The designed neuron is a single column of a crossbar-like circuit representing a layer of seven parallel neurons. The drain currents sum up in a soma-like circuit - modelled through a comparator - and trigger the output pulses. We demonstrate the advantages of the molFET in terms of area, power, and speed by comparing it with a conventional MOSFET implementation. The results confirm the molecular technology is a promising candidate for accomplishing high neuron throughput capability and massive redundancy, still providing high energy efficiency. The obtained results foster further investigation of molFET technology both at the device and circuit level.

Beyond-CMOS Artificial Neuron: A simulation-based exploration of the molecular-FET / Mo, F.; Spano, C. E.; Ardesi, Y.; Piccinini, G.; Graziano, M.. - In: IEEE TRANSACTIONS ON NANOTECHNOLOGY. - ISSN 1536-125X. - ELETTRONICO. - 20:(2021), pp. 903-911. [10.1109/TNANO.2021.3133728]

Beyond-CMOS Artificial Neuron: A simulation-based exploration of the molecular-FET

Mo F.;Spano C. E.;Ardesi Y.;Piccinini G.;Graziano M.
2021

Abstract

The recent growth of Artificial Neural Networks fueled the design of numerous Artificial Intelligence (AI) dedicated hardware implementations. High power dissipation, computational complexity, and large area footprints currently limit CMOS based real-time embedded AI applications. In this work, we design and simulate through SPICE, for the first time, an artificial analog neuron based on the molecular Field-Effect Transistor (molFET) technology. MolFETs are described by a circuital model whose physical characteristics are extracted from atomistic simulations. The designed neuron is a single column of a crossbar-like circuit representing a layer of seven parallel neurons. The drain currents sum up in a soma-like circuit - modelled through a comparator - and trigger the output pulses. We demonstrate the advantages of the molFET in terms of area, power, and speed by comparing it with a conventional MOSFET implementation. The results confirm the molecular technology is a promising candidate for accomplishing high neuron throughput capability and massive redundancy, still providing high energy efficiency. The obtained results foster further investigation of molFET technology both at the device and circuit level.
File in questo prodotto:
File Dimensione Formato  
Beyond_CMOS_Artificial_Neuron_A_Simulation_Based_Exploration_of.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
TNANO3133728.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 7.2 MB
Formato Adobe PDF
7.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2947956