For every nonconstant monic polynomial g∈ Z[X] , let M(g) be the set of positive integers m for which there exist an integer linear recurrence (sn)n≥0 having characteristic polynomial g and a positive integer M such that (sn)n≥0 has exactly m distinct residues modulo M. Dubickas and Novikas proved that M(X2- X- 1) = N. We study M(g) in the case in which g is divisible by a monic quadratic polynomial f∈ Z[X] with roots α, β such that αβ= ± 1 and α/ β is not a root of unity. We show that this problem is related to the existence of special primitive divisors of certain Lehmer sequences, and we deduce some consequences on M(g). In particular, for αβ= - 1 , we prove that m∈ M(g) for every integer m≥ 7 with m≠ 10 and 4 ∤ m.
On the number of residues of linear recurrences / Sanna, Carlo. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-9555. - STAMPA. - 8:1(2022). [10.1007/s40993-021-00305-6]
On the number of residues of linear recurrences
Carlo Sanna
2022
Abstract
For every nonconstant monic polynomial g∈ Z[X] , let M(g) be the set of positive integers m for which there exist an integer linear recurrence (sn)n≥0 having characteristic polynomial g and a positive integer M such that (sn)n≥0 has exactly m distinct residues modulo M. Dubickas and Novikas proved that M(X2- X- 1) = N. We study M(g) in the case in which g is divisible by a monic quadratic polynomial f∈ Z[X] with roots α, β such that αβ= ± 1 and α/ β is not a root of unity. We show that this problem is related to the existence of special primitive divisors of certain Lehmer sequences, and we deduce some consequences on M(g). In particular, for αβ= - 1 , we prove that m∈ M(g) for every integer m≥ 7 with m≠ 10 and 4 ∤ m.File | Dimensione | Formato | |
---|---|---|---|
On the number of residues of linear recurrences.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
315.12 kB
Formato
Adobe PDF
|
315.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
temp.pdf
Open Access dal 07/12/2022
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
313.7 kB
Formato
Adobe PDF
|
313.7 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2947072