For every nonconstant monic polynomial g∈ Z[X] , let M(g) be the set of positive integers m for which there exist an integer linear recurrence (sn)n≥0 having characteristic polynomial g and a positive integer M such that (sn)n≥0 has exactly m distinct residues modulo M. Dubickas and Novikas proved that M(X2- X- 1) = N. We study M(g) in the case in which g is divisible by a monic quadratic polynomial f∈ Z[X] with roots α, β such that αβ= ± 1 and α/ β is not a root of unity. We show that this problem is related to the existence of special primitive divisors of certain Lehmer sequences, and we deduce some consequences on M(g). In particular, for αβ= - 1 , we prove that m∈ M(g) for every integer m≥ 7 with m≠ 10 and 4 ∤ m.

On the number of residues of linear recurrences / Sanna, Carlo. - In: RESEARCH IN NUMBER THEORY. - ISSN 2363-9555. - STAMPA. - 8:1(2022). [10.1007/s40993-021-00305-6]

On the number of residues of linear recurrences

Carlo Sanna
2022

Abstract

For every nonconstant monic polynomial g∈ Z[X] , let M(g) be the set of positive integers m for which there exist an integer linear recurrence (sn)n≥0 having characteristic polynomial g and a positive integer M such that (sn)n≥0 has exactly m distinct residues modulo M. Dubickas and Novikas proved that M(X2- X- 1) = N. We study M(g) in the case in which g is divisible by a monic quadratic polynomial f∈ Z[X] with roots α, β such that αβ= ± 1 and α/ β is not a root of unity. We show that this problem is related to the existence of special primitive divisors of certain Lehmer sequences, and we deduce some consequences on M(g). In particular, for αβ= - 1 , we prove that m∈ M(g) for every integer m≥ 7 with m≠ 10 and 4 ∤ m.
File in questo prodotto:
File Dimensione Formato  
On the number of residues of linear recurrences.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 315.12 kB
Formato Adobe PDF
315.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
temp.pdf

Open Access dal 07/12/2022

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 313.7 kB
Formato Adobe PDF
313.7 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2947072