This work investigates quasi-static crack propagation in specimens made of brittle materials by combining local and non-local elasticity models. The portion of the domain where the failure initiates and then propagates is modeled via three-dimensional bond-based peridynamics (PD). On the other hand, the remaining regions of the structure are analyzed with high order one-dimensional finite elements based on the Carrera unified formulation (CUF). The coupling between the two zones is realized by using Lagrange multipliers. Static solutions of different fracture problems are provided by a sequential linear analysis. The proposed approach is demonstrated to combine the advantages of the CUF-based classical continuum mechanics models and PD by providing, in an efficient manner, both the failure load and the shape of the crack pattern, even for three-dimensional problems.

Quasi-static fracture analysis by coupled three-dimensional peridynamics and high order one-dimensional finite elements based on local elasticity / Pagani, A.; Enea, M.; Carrera, E.. - In: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. - ISSN 0029-5981. - STAMPA. - 123:4(2022), pp. 1098-1113. [10.1002/nme.6890]

Quasi-static fracture analysis by coupled three-dimensional peridynamics and high order one-dimensional finite elements based on local elasticity

Pagani A.;Enea M.;Carrera E.
2022

Abstract

This work investigates quasi-static crack propagation in specimens made of brittle materials by combining local and non-local elasticity models. The portion of the domain where the failure initiates and then propagates is modeled via three-dimensional bond-based peridynamics (PD). On the other hand, the remaining regions of the structure are analyzed with high order one-dimensional finite elements based on the Carrera unified formulation (CUF). The coupling between the two zones is realized by using Lagrange multipliers. Static solutions of different fracture problems are provided by a sequential linear analysis. The proposed approach is demonstrated to combine the advantages of the CUF-based classical continuum mechanics models and PD by providing, in an efficient manner, both the failure load and the shape of the crack pattern, even for three-dimensional problems.
File in questo prodotto:
File Dimensione Formato  
Pagani, Enea, Carrera - International Journal for Numerical Methods in Engineering - 2022.pdf

accesso aperto

Descrizione: PDF editoriale open access
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.88 MB
Formato Adobe PDF
4.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2946423