In this paper, we studied the effect of different carbon-based nanostructures on the electrical and mechanical properties of polypropylene (PP) nanocomposites. Multi-walled carbon nanotubes (MWCNT), expanded graphite (EG), and two different carbon black nanoparticles (CB) have been dispersed at several weight contents in the polymer matrix through a melt extrusion process. The produced nanocomposites have been used to obtain samples for the characterization by injection molding. The dispersion of the nanoparticles in the matrix has been evaluated by scanning electron microscopy (SEM) analysis. The electrical characterization has been performed both in DC and in AC configuration. The mechanical properties have been evaluated with both tensile test and impact strength (Izod). The thermal conductivity has been also evaluated. As a result, MWCNTs are the nanoadditive with the lowest electrical percolation threshold. This allows MWCNT nanocomposite to drastically change the electrical behavior without a significant embrittlement observed with the other nanoadditives. However, CB with the lowest surface area allows the highest conductivity, even though at a high particle content. EG has a limited effect on electrical properties, but it is the only one with a significant effect on thermal conductivity.

Effect of filler morphology on the electrical and thermal conductivity of pp/carbon-based nanocomposites / Zaccone, M.; Frache, A.; Torre, L.; Armentano, I.; Monti, M.. - In: JOURNAL OF COMPOSITES SCIENCE. - ISSN 2504-477X. - ELETTRONICO. - 5:8(2021), p. 196. [10.3390/jcs5080196]

Effect of filler morphology on the electrical and thermal conductivity of pp/carbon-based nanocomposites

Frache A.;
2021

Abstract

In this paper, we studied the effect of different carbon-based nanostructures on the electrical and mechanical properties of polypropylene (PP) nanocomposites. Multi-walled carbon nanotubes (MWCNT), expanded graphite (EG), and two different carbon black nanoparticles (CB) have been dispersed at several weight contents in the polymer matrix through a melt extrusion process. The produced nanocomposites have been used to obtain samples for the characterization by injection molding. The dispersion of the nanoparticles in the matrix has been evaluated by scanning electron microscopy (SEM) analysis. The electrical characterization has been performed both in DC and in AC configuration. The mechanical properties have been evaluated with both tensile test and impact strength (Izod). The thermal conductivity has been also evaluated. As a result, MWCNTs are the nanoadditive with the lowest electrical percolation threshold. This allows MWCNT nanocomposite to drastically change the electrical behavior without a significant embrittlement observed with the other nanoadditives. However, CB with the lowest surface area allows the highest conductivity, even though at a high particle content. EG has a limited effect on electrical properties, but it is the only one with a significant effect on thermal conductivity.
File in questo prodotto:
File Dimensione Formato  
J. Compos. Sci. 2021_5_196.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.57 MB
Formato Adobe PDF
7.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2941652